DOI QR코드

DOI QR Code

Cellular Prion Protein Enhances Drug Resistance of Colorectal Cancer Cells via Regulation of a Survival Signal Pathway

  • Lee, Jun Hee (Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine) ;
  • Yun, Chul Won (Medical Science Research Institute, Soonchunhyang University Seoul Hospital) ;
  • Lee, Sang Hun (Medical Science Research Institute, Soonchunhyang University Seoul Hospital)
  • Received : 2017.02.20
  • Accepted : 2017.06.14
  • Published : 2018.05.01

Abstract

Anti-cancer drug resistance is a major problem in colorectal cancer (CRC) research. Although several studies have revealed the mechanism of cancer drug resistance, molecular targets for chemotherapeutic combinations remain elusive. To address this issue, we focused on the expression of cellular prion protein ($PrP^C$) in 5-FU-resistant CRC cells. In 5-FU-resistant CRC cells, $PrP^C$ expression is significantly increased, compared with that in normal CRC cells. In the presence of 5-FU, $PrP^C$ increased CRC cell survival and proliferation by maintaining the activation of the PI3K-Akt signaling pathway and the expression of cell cycle-associated proteins, including cyclin E, CDK2, cyclin D1, and CDK4. In addition, $PrP^C$ inhibited the activation of the stress-associated proteins p38, JNK, and p53. Moreover, after treatment of 5-FU-resistant CRC cells with 5-FU, silencing of $PrP^C$ triggered apoptosis via the activation of caspase-3. These results indicate that $PrP^C$ plays a key role in CRC drug resistance. The novel strategy of combining chemotherapy with $PrP^C$ targeting may yield efficacious treatments of colorectal cancer.

Keywords

References

  1. Adelstein, D. J., Saxton, J. P., Rybicki, L. A., Esclamado, R. M., Wood, B. G., Strome, M., Lavertu, P., Lorenz, R. R. and Carroll, M. A. (2006) Multiagent concurrent chemoradiotherapy for locoregionally advanced squamous cell head and neck cancer: mature results from a single institution. J. Clin. Oncol. 24, 1064-1071. https://doi.org/10.1200/JCO.2005.01.5867
  2. Alvarez, P., Marchal, J. A., Boulaiz, H., Carrillo, E., Velez, C., Rodriguez- Serrano, F., Melguizo, C., Prados, J., Madeddu, R. and Aranega, A. (2012) 5-Fluorouracil derivatives: a patent review. Expert Opin. Ther. Pat. 22, 107-123. https://doi.org/10.1517/13543776.2012.661413
  3. Brown, D. R., Schulz-Schaeffer, W. J., Schmidt, B. and Kretzschmar, H. A. (1997) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146, 104-112. https://doi.org/10.1006/exnr.1997.6505
  4. Cheng, Y., Tao, L., Xu, J., Li, Q., Yu, J., Jin, Y., Chen, Q., Xu, Z., Zou, Q. and Liu, X. (2014) CD44/cellular prion protein interact in multidrug resistant breast cancer cells and correlate with responses to neoadjuvant chemotherapy in breast cancer patients. Mol. Carcinog. 53, 686-697. https://doi.org/10.1002/mc.22021
  5. Du, L., Rao, G., Wang, H., Li, B., Tian, W., Cui, J., He, L., Laffin, B., Tian, X., Hao, C., Liu, H., Sun, X., Zhu, Y., Tang, D. G., Mehrpour, M., Lu, Y. and Chen, Q. (2013) CD44-positive cancer stem cells expressing cellular prion protein contribute to metastatic capacity in colorectal cancer. Cancer Res. 73, 2682-2694. https://doi.org/10.1158/0008-5472.CAN-12-3759
  6. Hammond, W. A., Swaika, A. and Mody, K. (2016) Pharmacologic resistance in colorectal cancer: a review. Ther. Adv. Med. Oncol. 8, 57-84. https://doi.org/10.1177/1758834015614530
  7. Holohan, C., Van Schaeybroeck, S., Longley, D. B. and Johnston, P. G. (2013) Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714-726. https://doi.org/10.1038/nrc3599
  8. Li, Q. Q., Sun, Y. P., Ruan, C. P., Xu, X. Y., Ge, J. H., He, J., Xu, Z. D., Wang, Q. and Gao, W. C. (2011) Cellular prion protein promotes glucose uptake through the Fyn-HIF-2${\alpha}$-Glut1 pathway to support colorectal cancer cell survival. Cancer Sci. 102, 400-406. https://doi.org/10.1111/j.1349-7006.2010.01811.x
  9. Liang, J., Ge, F., Guo, C., Luo, G., Wang, X., Han, G., Zhang, D., Wang, J., Li, K., Pan, Y., Yao, L., Yin, Z., Guo, X., Wu, K., Ding, J. and Fan, D. (2009) Inhibition of PI3K/Akt partially leads to the inhibition of $PrP^C$-induced drug resistance in gastric cancer cells. FEBS J. 276, 685-694. https://doi.org/10.1111/j.1742-4658.2008.06816.x
  10. Liang, J. and Kong, Q. (2012) ${\alpha}$-Cleavage of cellular prion protein. Prion 6, 453-460. https://doi.org/10.4161/pri.22511
  11. Liang, J., Pan, Y., Zhang, D., Guo, C., Shi, Y., Wang, J., Chen, Y., Wang, X., Liu, J., Guo, X., Chen, Z., Qiao, T. and Fan, D. (2007) Cellular prion protein promotes proliferation and G1/S transition of human gastric cancer cells SGC7901 and AGS. FASEB J. 21, 2247-2256. https://doi.org/10.1096/fj.06-7799com
  12. Liu, L. Z., Zhou, X. D., Qian, G., Shi, X., Fang, J. and Jiang, B. H. (2007) AKT1 amplification regulates cisplatin resistance in human lung cancer cells through the mammalian target of rapamycin/ p70S6K1 pathway. Cancer Res. 67, 6325-6332. https://doi.org/10.1158/0008-5472.CAN-06-4261
  13. Longley, D. B., Harkin, D. P. and Johnston, P. G. (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330-338. https://doi.org/10.1038/nrc1074
  14. Luo, J., Manning, B. D. and Cantley, L. C. (2003) Targeting the PI3KAkt pathway in human cancer: rationale and promise. Cancer Cell 4, 257-262. https://doi.org/10.1016/S1535-6108(03)00248-4
  15. Malaga-Trillo, E., Solis, G. P., Schrock, Y., Geiss, C., Luncz, L., Thomanetz, V. and Stuermer, C. A. (2009) Regulation of embryonic cell adhesion by the prion protein. PLoS Biol. 7, e55.
  16. Manning, B. D. and Cantley, L. C. (2007) AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274. https://doi.org/10.1016/j.cell.2007.06.009
  17. Martin-Lanneree, S., Hirsch, T. Z., Hernandez-Rapp, J., Halliez, S., Vilotte, J. L., Launay, J. M. and Mouillet-Richard, S. (2014) PrPC from stem cells to cancer. Front Cell Dev Biol 2, 55.
  18. McEwan, J. F., Windsor, M. L. and Cullis-Hill, S. D. (2009) Antibodies to prion protein inhibit human colon cancer cell growth. Tumour Biol. 30, 141-147. https://doi.org/10.1159/000225243
  19. McLennan, N. F., Brennan, P. M., McNeill, A., Davies, I., Fotheringham, A., Rennison, K. A., Ritchie, D., Brannan, F., Head, M. W., Ironside, J. W., Williams, A. and Bell, J. E. (2004) Prion protein accumulation and neuroprotection in hypoxic brain damage. Am. J. Pathol. 165, 227-235. https://doi.org/10.1016/S0002-9440(10)63291-9
  20. Mehrpour, M. and Codogno, P. (2010) Prion protein: From physiology to cancer biology. Cancer Lett. 290, 1-23. https://doi.org/10.1016/j.canlet.2009.07.009
  21. Oliphant, R., Nicholson, G. A., Horgan, P. G., Molloy, R. G., McMillan, D. C. and Morrison, D. S. (2013) Deprivation and colorectal cancer surgery: longer-term survival inequalities are due to differential postoperative mortality between socioeconomic groups. Ann. Surg. Oncol. 20, 2132-2139. https://doi.org/10.1245/s10434-013-2959-9
  22. Park, J. Y., Jeong, J. K., Lee, J. H., Moon, J. H., Kim, S. W., Lee, Y. J. and Park, S. Y. (2015) Induction of cellular prion protein (PrPC) under hypoxia inhibits apoptosis caused by TRAIL treatment. Oncotarget 6, 5342-5353.
  23. Pignon, J. P., Bourhis, J., Domenge, C. and Designe, L. (2000) Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-Analysis of Chemotherapy on Head and Neck Cancer. Lancet 355, 949-955. https://doi.org/10.1016/S0140-6736(00)90011-4
  24. Siegel, R. L., Miller, K. D. and Jemal, A. (2017) Cancer Statistics, 2017. CA Cancer J. Clin. 67, 7-30. https://doi.org/10.3322/caac.21387
  25. Tsukuda, M., Ishitoya, J., Matsuda, H., Horiuchi, C., Taguchi, T., Takahashi, M., Nishimura, G., Kawakami, M., Watanabe, M., Niho, T., Kawano, T., Ikeda, Y., Sakuma, Y., Shiono, O. and Komatsu, M. (2010) Randomized controlled phase II comparison study of concurrent chemoradiotherapy with docetaxel, cisplatin, and 5-fluorouracil versus CCRT with cisplatin, 5-fluorouracil, methotrexate and leucovorin in patients with locally advanced squamous cell carcinoma of the head and neck. Cancer Chemother. Pharmacol. 66, 729-736. https://doi.org/10.1007/s00280-009-1217-0
  26. Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. and Bilanges, B. (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11, 329-341.
  27. Vassallo, N., Herms, J., Behrens, C., Krebs, B., Saeki, K., Onodera, T., Windl, O. and Kretzschmar, H. A. (2005) Activation of phosphatidylinositol 3-kinase by cellular prion protein and its role in cell survival. Biochem. Biophys. Res. Commun. 332, 75-82. https://doi.org/10.1016/j.bbrc.2005.04.099
  28. Wang, J. H., Du, J. P., Zhang, Y. H., Zhao, X. J., Fan, R. Y., Wang, Z. H., Wu, Z. T. and Han, Y. (2011) Dynamic changes and surveillance function of prion protein expression in gastric cancer drug resistance. World J. Gastroenterol. 17, 3986-3993. https://doi.org/10.3748/wjg.v17.i35.3986
  29. Wang, Q., Qian, J., Wang, F. and Ma, Z. (2012) Cellular prion protein accelerates colorectal cancer metastasis via the Fyn-SP1-SATB1 axis. Oncol. Rep. 28, 2029-2034. https://doi.org/10.3892/or.2012.2025
  30. Weise, J., Sandau, R., Schwarting, S., Crome, O., Wrede, A., Schulz- Schaeffer, W., Zerr, I. and Bahr, M. (2006) Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke 37, 1296-1300. https://doi.org/10.1161/01.STR.0000217262.03192.d4
  31. Yang, X., Zhang, Y., Zhang, L., He, T., Zhang, J. and Li, C. (2014) Prion protein and cancers. Acta Biochim. Biophys. Sin. (Shanghai) 46, 431-440. https://doi.org/10.1093/abbs/gmu019
  32. Yuan, T. L. and Cantley, L. C. (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497-5510. https://doi.org/10.1038/onc.2008.245
  33. Yun, C. W., Yun, S., Lee, J. H., Han, Y. S., Yoon, Y. M., An, D. and Lee, S. H. (2016) Silencing Prion Protein in HT29 Human Colorectal Cancer Cells Enhances Anticancer Response to Fucoidan. Anticancer Res. 36, 4449-4458. https://doi.org/10.21873/anticanres.10989
  34. Zhang, N., Yin, Y., Xu, S. J. and Chen, W. S. (2008) 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 13, 1551-1569. https://doi.org/10.3390/molecules13081551

Cited by

  1. Melatonin and 5-fluorouracil co-suppress colon cancer stem cells by regulating cellular prion protein-Oct4 axis vol.65, pp.4, 2018, https://doi.org/10.1111/jpi.12519
  2. Suppression of Notch1 and AKT mediated epithelial to mesenchymal transition by Verrucarin J in metastatic colon cancer vol.9, pp.8, 2018, https://doi.org/10.1038/s41419-018-0810-8
  3. PGC-1α Controls Mitochondrial Biogenesis in Drug-Resistant Colorectal Cancer Cells by Regulating Endoplasmic Reticulum Stress vol.20, pp.7, 2018, https://doi.org/10.3390/ijms20071707
  4. PI3K/ Akt/ mTOR Pathway as a Therapeutic Target for Colorectal Cancer: A Review of Preclinical and Clinical Evidence vol.20, pp.12, 2019, https://doi.org/10.2174/1389450120666190618123846
  5. Prion Protein in Glioblastoma Multiforme vol.20, pp.20, 2018, https://doi.org/10.3390/ijms20205107
  6. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy vol.9, pp.1, 2020, https://doi.org/10.3390/cells9010060
  7. Novel regulators of PrPC expression as potential therapeutic targets in prion diseases vol.24, pp.8, 2018, https://doi.org/10.1080/14728222.2020.1782384
  8. Tumor resistance to radiotherapy is triggered by an ATM/TAK1-dependent-increased expression of the cellular prion protein vol.40, pp.19, 2021, https://doi.org/10.1038/s41388-021-01746-0
  9. HPV-associated penile cancer: Impact of copy number alterations in miRNA/mRNA interactions and potential druggable targets vol.32, pp.2, 2018, https://doi.org/10.3233/cbm-210035
  10. The Cellular Prion Protein and the Hallmarks of Cancer vol.13, pp.19, 2021, https://doi.org/10.3390/cancers13195032