DOI QR코드

DOI QR Code

Applicability of the SBR Process Using Aerobic Granular Sludge (AGS) in Municipal Wastewater Treatment

호기성 그래뉼 슬러지를 이용한 연속 회분식 공정의 도시하수처리에 대한 적용

  • Yae, Jae-Bin (Department of Environmental Engineering and Energy, Graduate School Myongji University) ;
  • Ryu, Jae-Hoon (Department of Environmental Engineering and Energy, Graduate School Myongji University) ;
  • Hong, Seong-Wan (Department of Environmental Engineering and Energy, Graduate School Myongji University) ;
  • Kim, Hyun-Gu (BlueBank Co., Ltd.) ;
  • Ahn, Dae-Hee (Department of Environmental Engineering and Energy, Graduate School Myongji University)
  • 예재빈 (명지대학교 환경에너지공학과 일반대학원) ;
  • 류재훈 (명지대학교 환경에너지공학과 일반대학원) ;
  • 홍성완 (명지대학교 환경에너지공학과 일반대학원) ;
  • 김현구 (주식회사 블루뱅크) ;
  • 안대희 (명지대학교 환경에너지공학과 일반대학원)
  • Received : 2018.01.05
  • Accepted : 2018.03.09
  • Published : 2018.04.30

Abstract

The purpose of this study was to confirm the applicability of aerobic granular sludge (AGS) in the advanced sewage treatment process. Simulated influent was used in the operation of a laboratory scale reactor. The operation time of one cycle was 4 h and the reactor was operated for six cycles per day. The volume exchange ratio was 50%. The influent was injected in divisions of 25% to increase the removal efficiency of nitrogen in every cycle. As a result, the removal efficiencies of $COD_{Cr}$ and TN in this reactor were 98.2% and 76.7% respectively. During the operation period, the AGS/MLVSS concentration ratio increased from 70.0% to 86.7%, and the average $SVI_{30}$ was 67 mL/g. The SNR and SDNR were 0.073-0.161 kg $NH_4{^+}$-N/kg MLVSS/day and 0.071-0.196 kg $NO_3{^-}$-N/kg MLVSS/day respectively. These values were higher or similar to those reported in other studies. The operation time of the process using AGS is shorter than that of the conventional activated sludge process. Hence, this process can replace the activated sludge process.

Keywords

References

  1. American Public Health Association, 1998, Standard methods for the examination of water and wastewater, 20th ed, American Public Health Association, Washington, DC, USA, Method 2-54.
  2. Baeza, J. A., Gabriel, D., Lafunte, J., 2004, Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic ($A^2$/O)wastewater treatment plant (WWTP), Process Biochem., 39(11), 1615-1624. https://doi.org/10.1016/S0032-9592(03)00300-5
  3. Beun, J. J., Hendriks, A., Van loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A., Heifnen, J. J., 1999, Aerobic granulation in a sequnecing batch reactor, Water Res., 33(10), 2283-2290. https://doi.org/10.1016/S0043-1354(98)00463-1
  4. De Bruin, L. M. M., De Kreuk, M. K., Van der Roest, H. F. R., Uijterlinde, C., Van Loosdrecht, M. C. M., 2004, Aerobic granular sludge technology: An Alternative to activated sludge, Water Sci. Technol., 49(11-12), 1-7.
  5. Gao, D., Liu, L., Liang, H., Wu, W. M., 2011, Aerobic granular sludge: Characterization, mechanism of granulation and application to wastewater treatment, Crit Rev. Biotechnol., 31(2), 137-152. https://doi.org/10.3109/07388551.2010.497961
  6. Giesen, A., de Bruin, L. M. M., Niermans, R. P., Van der Roest, H. F., 2013, Advancements in the application of aerobic granular biomass technology for sustainable treatment of wastewater, Water Pract. Technol., 8(1), 47-54. https://doi.org/10.2166/wpt.2013.007
  7. Henze, M., 1989, The influence of raw wastewater biomass on activated sludge oxygen respiration rates and denitrification rates, Water Sci. Technol., 21(6-7), 603-607. https://doi.org/10.2166/wst.1989.0262
  8. Isanta, E., Suarez-Ojeda, M. E., Val del Río, A., Morales, N., Perez, J., Carrera, J., 2012, Long term operation of a granular sequencing batch reactor at pilot scale treating a low-strength wastewater, Chem. Eng. J., 198-199, 163-170. https://doi.org/10.1016/j.cej.2012.05.066
  9. Janczukowicz, W., Szewczyk, M., Krzemieniewski, M., Pesta, J., 2001, Settling properties of activated sludge from a Sequencing Batch Reactor (SBR), Pol. J. Environ. Stud., 10(1), 15-20.
  10. Jenkins, D., Richard, M. G., Daigger, G. T., 1993, Manual on the causes and control of activated sludge bulking and foaming, 2nd ed, Lewos Pubishers, New York, USA, 11-12.
  11. Kujawa, K., Klapwijk, B., 1999, A Method to estimate denitrification potential for predenitrification system using NUR batch test, Water Res., 33(10), 2291-2300. https://doi.org/10.1016/S0043-1354(98)00459-X
  12. Kim, I. W., Joo, H. J., 2012, A Study on application of SBR process for RO retentate treatment, Kor. Soc. Environ. Eng., 34(2), 79-85. https://doi.org/10.4491/KSEE.2012.34.2.079
  13. Kim, I. W., 2013, Characteristics of biological treatment for RO retentate of low saline water, Ph. D. Dissertation, Dongguk University, Seoul.
  14. Kim, H. G., Ahn, D. H., Cho, E. H., Kim, H. Y., Ye, H. Y., Mun, J. S., 2016, A Study on the biological treatment of RO concentrate using aerobic granular sludge, Kor. Soc. Environ. Eng., 38(2), 79-86. https://doi.org/10.4491/KSEE.2016.38.2.79
  15. Lee, B. S., Choi, S. W., 2009, Formation and characteristics of aerobic granular sludge using polymer in sequencing batch reactor, Kor. Soc. Environ. Eng., 31(12), 1143-1150.
  16. Lee, K. H., 2010, The study of optimum plan and operational characteristic for the field application of $A^2$/O process in the high-way service area, Ph. D. Dissertation, Kyonggi University, Suwon.
  17. Li, J., Ding, L. B., Cai, A., Huang, G. X., Horn, H., 2014, Aerobic sludge granulation in a full-scale sequencing batch reactor, BioMed Res. Int., (Article ID 268789), 1-12.
  18. Liu, Y. Q., Moy, B., Kong, Y. H., Tay, J. H., 2010, Formation, physical characteristics and microbial community structure of aerobic granules in a pilot-scale sequencing batch reactor for real wastewater treatment, Enzyme Microb. Technol., 46(6), 520-525. https://doi.org/10.1016/j.enzmictec.2010.02.001
  19. Ministry of Environment (MOE), 2014, The average of sewage.
  20. Ministry of Environment (MOE), 2016, The Sewage Law.
  21. Morales, N., Figueroa, M., Fra-Vazquez, A., Val Del Rio, A., Campos, J. L., Mosquera- Corral, A., Mendez, R., 2013, Operation of an aerobic granular pilot scale SBR plant to treat swine slurry, Process Biochem., 48(8), 1216-1221. https://doi.org/10.1016/j.procbio.2013.06.004
  22. Morgenroth, E., Sherdeni, T., Van Loosdrecht, M. C. M., Heijnen, J. J., Wilderer, P. A., 1997, Aerobic granular sludge in a sequencing batch reactor, Water Res., 31(12), 3191-3194. https://doi.org/10.1016/S0043-1354(97)00216-9
  23. Pronk, M., de Kreuk, M. K., de Bruin, B., Kamminga, P., Kleerebezem, R., van Loosdrecht, M. C. M., 2015, Full scale performance of the aerobic granular sludge process for sewage treatment, Water Res., 84(1), 207-217. https://doi.org/10.1016/j.watres.2015.07.011
  24. Qin, L., Liu, Y., Tay, J. H., 2004, Effect of settling time on aerobic granulation in sequencing batch reactor, Biochem. Eng. J., 21(1), 47-52. https://doi.org/10.1016/j.bej.2004.03.005
  25. Randall, C. W., Barnard, J. L., Stensel, H. D., 1992, Design and retrofit fo wastewater treatment plants for biological nutrient removal. Water Quality Management Library, 5, Technomic Publishing Company, Inc., Lancaster, PA.
  26. Royal Haskoning DHV., 2016, The basis of the Nereda wastewater treatment technology: Aerobic granular sludge with excellent settling properties.
  27. Wei, D., Si, W., Zhang, Y., Qiao, Z., Yao, Z., Zhao, W., Zhao, J., Chen, G., Wei, Q., Du, B., 2012, Aerobic granulation and nitrogen removal with the effluent of internal circulation reactor in start-up of a pilot-scale sequencing batch reactor, Bioprocess Biosyst. Eng., 35(9), 1489-1496. https://doi.org/10.1007/s00449-012-0738-9
  28. Wirtz, R. A., Dague, R. R., 1996, Enhancement of granulation and start-up in the anaerobic sequencing batch reactor, Water Environ. Res., 68(5), 883-892. https://doi.org/10.2175/106143096X127893