DOI QR코드

DOI QR Code

A Design Method of Three-phase IPMSM and Clamping Force Control of EMB for High-speed Train

고속철도차량의 EMB 적용을 위한 3상 IPMSM의 설계 및 제동압부력 제어

  • Baek, Seung-Koo (Advanced Railroad Vehicle Division, Korea Railroad Research Institute) ;
  • Oh, Hyuck-Keun (Advanced Railroad Vehicle Division, Korea Railroad Research Institute) ;
  • Kwak, Min-ho (Advanced Railroad Vehicle Division, Korea Railroad Research Institute) ;
  • Kim, Seog-Won (Advanced Railroad Vehicle Division, Korea Railroad Research Institute)
  • 백승구 (한국철도기술연구원 차세대철도차량본부) ;
  • 오혁근 (한국철도기술연구원 차세대철도차량본부) ;
  • 곽민호 (한국철도기술연구원 차세대철도차량본부) ;
  • 김석원 (한국철도기술연구원 차세대철도차량본부)
  • Received : 2018.01.22
  • Accepted : 2018.04.06
  • Published : 2018.04.30

Abstract

This paper proposes a design method for a 3-phase interior permanent magnet synchronous motor (IPMSM) and clamping force control method for an electro-mechanical brake (EMB) using co-simulation for a high-speed train (HST). A traditional pneumatic brake system needs much space for the compressor, brake reservoir, and air pipe. However, an EMB system uses up to 50% less space due to the use of a motor and electric wires for controlling the brake caliper. In addition, it can reduce the latency time for brake control because of the fast response and precise control. A train that has many brakes is advantageous for safety because of the control by sharing the braking force. In this paper, a driving method for a cam-shaft-type EMB is modeled. It is different from the ball-screw-type brakes that are widely used in automobiles. In addition, a co-simulation method is proposed using JMAG and Matlab/Simulink. The IPMSM was designed and analyzed with the JMAG tool, and the control system was simulated using Matlab/Simulink. The effectiveness of the co-simulation results of the mechanical clamping force and braking force was verified by comparison with the clamping force specifications of a HEMU-430X HST.

본 논문은 고속철도차량에 전기기계제동장치(EMB : Electric Mechanical Brake)를 적용하기 위한 주요 구성품인 3상 매입형영구자석동기전동기(IPMSM : Interior Permanent Magnet Synchronous Motor)의 설계방법과 이를 이용한 인버터 제어시스템의 압부력제어 시뮬레이션 방법을 제안한다. 최근 자동차에서 주로 사용하는 유압식 제동장치는 유압을 발생시키기 위해 필요한 오일류와 유압 라인의 관리, 유지보수성 및 유압펌프의 동작으로 인한 효율성 등이 문제로 제기되면서 EMB에 대한 관심이 높아지고 있으나 비용증가 및 안전측면의 보완이 지속적으로 요구되고 있다. 공압식 제동장치를 주로 사용하는 철도차량은 EMB 시스템을 적용할 경우 차량 하부에 큰 공간을 차지하는 공기압축기, 제동공기통 및 연결 배관 등의 부품이 필요하지 않으므로 50% 이상의 소형화가 가능하며 인버터를 적용한 전동기 구동방식으로 인하여 상대적으로 빠른 응답속도와 정밀제어를 통해 공주거리를 단축시킬 수 있는 장점을 갖는다. 또한, 철도차량은 다수의 제동장치가 제동력을 분담하는 구조로 설계되어 자동차와 비교하여 EMB 적용이 안전측면에서 유리하다. 본 논문에서는 JMAG을 활용하여 고속철도의 제동 캘리퍼와 제동력 출력에 적합한 모터설계 및 전자계해석을 수행하였다. 제동 압부력 제어 시뮬레이션을 위해 기계구동부는 기존 EMB 시스템에 주로 적용된 볼스크류 형태의 동작방식과는 달리 고속철도차량에 적용된 편심축 회전을 이용한 구동방식으로 모델링하였다. IPMSM 제어를 통한 제동압부력 및 제동력 출력결과는 Matlab/Simulink를 활용하여 JMAG의 IPMSM 모델과 co-simulation을 통해 보였으며 결과의 타당성은 차세대고속철도(HEMU-430X)의 제동사양과의 비교를 통해 검증하였다.

Keywords

References

  1. R. T. Bannatyne. "Advances and challenges in electronic braking control technology," SAE Technical Papers, Sep. 1998.
  2. M. Sundar, D. Plunkett. "Brake-by-Wire, Motivation and Engineering-GM Sequel," SAE Technical Papers, Jan. 2006. DOI: https://doi.org/10.4271/2006-01-3194
  3. J. S. Cheon, "Brake by wire system configuration and functions using front EWB(Electric Wedge Brake) and rear EMB(Electro-Mechanical Brake) actuators," SAE Technical Papers, Oct. 2010. DOI: https://doi.org/10.4271/2010-01-1708
  4. J. K. Ahn, K. H. Jung, D. H. Kim, H. B. Jin, H. S. Kim, and S. H. Hwang, "Analysis of a regenerative braking system for hybrid electric vehicles using an electro-mechanical brake," International Journal of Automotive Technology, vol. 10, no. 2, pp. 229-234, Apr. 2009. DOI: https://doi.org/10.1007/s12239-009-0027-z
  5. M. R. A. Atia, S. A. Haggag, and A. M. M. Kamal, "Enhanced electromechanical brake-by-wire system using sliding mode controller," Journal of Dynamic Systems, Measurement, and Control, vol. 138, no. 4, pp. 0410031-6, Apr. 2016.
  6. C. Jo, S. Hwang, and H. Kim, "Clamping-force control for electromechanical brake," IEEE Transactions on Vehicular Technology, vol. 59, no. 7, pp. 3205-3212, Sep. 2010. DOI: https://doi.org/10.1109/TVT.2010.2043696
  7. Y. H. Ki, K. J. Lee, J. S. Cheon, and H. S. Ahn, "Design and implementation of a new clamping force estimator in electro-mechanical brake systems," International Journal of Automotive Technology, vol. 14, no. 5, pp. 739-745, Oct. 2013. DOI: https://doi.org/10.1007/s12239-013-0081-4
  8. Y. O. Lee, M. Jang, W. Lee, C. W. Lee, C. C. Chung, and Y. S. Son, "Novel clamping force control for electric parking brake systems," ELSEVIER Mechatronics, vol. 21, no. 7, pp. 1156-1162, Jun. 2011. DOI: https://doi.org/10.1016/j.mechatronics.2011.07.006
  9. W. Hwang and K. Huh, "Fault detection and estimation for electromechanical brake systems using parity space approach," Journal of Dynamic Systems, Measurement, and Control, vol. 137, no. 1, pp. 0145041-7, Jan. 2015. DOI: http://doi.org/10.1115/1.4028184
  10. S. Kim and K. Huh, "Fault-tolerant braking control with integerated EMBs and regenerative in-wheel motors," International Journal of Automotive Technology, vol. 17, no. 5, pp. 923-936, Apr. 2016. DOI: https://doi.org/10.1007/s12239-016-0090-1
  11. W. Hwang, K. Han, and K. Huh, "Fault detection and diagnosis of the electromechanical brake based on observer and parity space," International Journal of Automotive Technology, vol. 13, no. 5, pp. 845-851, Aug. 2012. DOI: https://doi.org/10.1007/s12239-012-0085-5
  12. K. Han, I.-J. Yang, and K. Huh, "Current and Force Sensor Fault Detection Algorithm for Clamping Force Control of Electro-Mechanical Brake," Journal of Institute of Control, Robotics and Systems, vol. 17, no. 11, pp. 1145-1153, Sep. 2011. DOI: https://doi.org/10.5302/J.ICROS.2011.17.11.1145
  13. Y.-H. Ki, H.-S. Ahn, and J. S. Cheon, "Fault-tolerant control of Emb systems," SAE Technical Papers, vol. 5, no. 2, pp. 579-589, Sep. 2012. DOI: https://doi.org/10.4271/2012-01-1795
  14. M. Sho, K. Park, M. Park, and M. Kim, "Development of a fail-safe control strategy for electro-mechanical brake system," SAE Technical Papers, Mar. 2013.
  15. M. S. Kim, S. C. Oh and S. J. Kwon, "Characteristic Test of the Electro Mechanical Brake Actuator for Urban Railway Vehicles," J. Korean Soc. Precis. Eng., vol. 33, no. 7, pp. 535-540, July 2016. DOI: https://doi.org/10.7736/KSPE.2016.33.7.535
  16. Y. Honda, T. Nakamura, T. Higaki, Y. Tkeda, "Motor design Cosiderations and Test Result of an Interior Permanent Magnet Syncronus Motor for Electric Vechicles," IEE Proc. of Elecric Power Application, vol. 145, no. 2, pp119-124, 1998 https://doi.org/10.1049/ip-epa:19981728
  17. T. M. Rowan and R. J. Kerhman, "A new synchronous current regulator and an analysis of current-regulated PWM inverter," IEEE Transactions on Industry Applications, vol. IA-22, no. 4, pp. 678-690, July/August, 1986. DOI: https://doi.org/10.1109/TIA.1986.4504778