DOI QR코드

DOI QR Code

동적영향변수를 통한 자기부상열차용 철도교의 해석적 연구

Analytical Study of Railroad Bridge for Maglev Propulsion Train with Dynamical Influence Variable

  • 투고 : 2018.03.08
  • 심사 : 2018.04.06
  • 발행 : 2018.04.30

초록

자기부상열차는 비접촉자기부상과 안내 및 추진 시스템을 이용하므로 안전한 고속주행이 가능할 뿐만 아니라 진동이 적으므로 주행안정성에도 탁월하다. 최근 우리나라도 자기부상열차개발을 국가성장산업으로 지정하면서 자기부상열차의 시범제작과 시범운행을 시도하였으며 이에 대한 연구와 투자가 진행되고 있다. 본 연구는 고속주행으로 발생하는 각 모듈의 동적 응답의 상호관계를 분석하는 것이 연구목적이므로 주행속도, 노면조도, 현가장치의 물성치, 교량거더의 강성비 등 동적효과에 영향을 주는 주요변수들의 변화에 따라 동적응답들의 상호관계를 연구범위로 선택하였다. 따라서 콘크리트 박스거더교를 교량모델로 선택하였고 국내 생산중인 부상열차와 레일형식을 각각 이동열차하중과 가이드웨이 해석모델로 선택하였다. 해석결과 처짐 제한을 2000분의 L로 제시한 단면을 가진 자기부상열차용 교량의 고유진동수는 일반교량에 비해 높다는 것을 알 수 있다. 일반교량구조에서와 같이 자기부상열차용 철도교도 이동속도에 따른 거더의 동적응답은 속도에 비례하여 크게 증가함을 알 수 있다. 설계기준은 이동속도와 관계없이 10%의 충격계수로 동적효과를 나타내므로 설계기준의 값과 적용범위는 검증이 요구된다. 거더의 동적응답은 시속 240km/h에서 극대 값을 가지며 이후 속도증가에 따라 비례하여 증가함을 알 수 있다. 본 연구의 해석결과들은 자기부상열차용 철도교 설계에 적용할 수 있으며 설계기준을 확인하거나 검증할 때 기본 자료를 제공해 줄 수 있다.

Because maglev trains have a propulsion and absorption force without contact with the rails, they can drive safely at high-speed with little oscillation. Recently, test model of a maglev propulsion train was produced and operated, and has since been chosen as a national growth industry in South Korea; there have been many studies and considerable investment in these fields. This study examined the dynamic responses due to bridge-maglev train interaction and basic material to design bridges for maglev trains travelling at high-speed. Depending on the major factors affecting the dynamic effects, the scope of this study was restricted to the relationship between dynamic responses. A concrete box girder was chosen as a bridge model and injured train and rail types in domestic production were selected as the moving train load and guideway analysis model, respectively. From the analysis results, the natural frequency of a bridge for a maglev train, which has a deflection limit L/2000, was higher than those of bridges for general trains. The dynamic responses of the girder of the bridge for a maglev train showed a substantial increase in proportion to the velocities of the moving train like other general bridge cases. Maximum dynamic response of the girder is shown at a moving velocity of 240km/h and increased with increasing moving velocity of train. These results can be used to design a bridge for maglev propulsion trains and provide the basic data to confirm the validity and verification of the design code.

키워드

참고문헌

  1. H. J. Cho, Performance Test of the Urban Transit Maglev Vehicle (UTM-01) in Korea, Journal of the Korean Society for Noise and Vibration Engineering, vol. 1998, no. 6, pp. 102-107, 1998.
  2. Korea Institute of Machinery and Materials, Development of Test and Performance Evaluation Te chnology for the Urban Transit Maglev System, pp. 1-225, Korea Institute of Civil Engineering and Building Technology, 1999.
  3. H. J. Cho, M. H. Yoo, J. M. Lee, Status of Maglev Development in Korea, Journal of the Korean Institute of Electrical Engineers, vol. 2001, no. 4, pp. 362-365, 2001.
  4. H. J. Cho, Development of Key Technologies of the Urban Transit Maglev Train, Korea Institute of Machinery and Materials, pp. 1-1867, 2003.
  5. A. R. Wheeler, Aspects of the Design and Constructi on of D.C. Magnetic Suspension Systems, Ph. D. thesis, University of Sussex., 1975.
  6. B. V. Jayawant, et. al., Development of 1-ton Magnetically Suspended Vehicle using Controlled D.C. Electromagnets, Proc. IEE, 123, pp. 941-948, 1976. DOI: https://doi.org/10.1049/piee.1976.0203
  7. D. G. Aylwin, The Design of Controlled D.C. Magnetic Suspension Systems., M. Phil thesis, University of Sussex, 1977.
  8. J. P.Bullock, Analysis and Design of an Electromagn etic Suspension System, Internal Report, University of Warwick, 1985.
  9. P. K. Sinha, Electromagnetic Suspension Dynamics & Control, Peter Peregrinus Ltd., London, United Kingdom, 1987.
  10. C. F. Zhao, and Zhai, W. M., Maglev Vehicle/ Guideway vertical random response and ride quality, Vehicle System Dynamics, vol. 38, no. 3, pp. 185-210, 2002. https://doi.org/10.1076/vesd.38.3.185.8289
  11. S. D. Kwon, Bridge-Vehicle interaction Analysis of Suspension Bridges Considering the Effects of the Shear Deformation, Journal of the Earthquake Engineering Society of Korea, vol. 8, no. 6, pp. 1-11, 2004. DOI: https://doi.org/10.5000/EESK.2004.8.6.001
  12. J. S. Lee, Dynamic Interaction Analysis between Actively Controled Maglev and Guideway, Ph. D. thesis, Sungkyunkwan University, 2008.
  13. M. S. Kong, S. S. Yhim, Dynamic Analysis of Structures under Moving Loads in Time and Frequency Domain, Journal of The Korea Institute for Structural Maintenance and Inspection, vol. 11, no. 3, pp. 87-94, 2007.
  14. S. D. Kwon, Effectiveness of TMDs for Control of Traffic Induced Bridge Vibrations, KSCE Journal of Civil Engineering, vol. 18, no. 1-4, pp. 457-467, 1998.
  15. S. C. Yang, Evaluation of Dynamic Force Subjected to Substructure Considering Train and Track Interaction, vol. 17, no. 1-4, pp. 79-88, 1997.
  16. Y. N. Hong, Won-Seok Chung, In-Ho Yeo, Analysis of Dynamic Responses of Urban Maglev Guideway, International journal of railway, vol. 12, no. 1, pp. 115-121, 2009.