DOI QR코드

DOI QR Code

The effects of non-condensable gas on condensation heat transfer on a super-hydrophobic surface tube

초소수성 코팅 튜브에서의 비응축가스 영향에 대한 응축 열전달 연구

  • Ji, Dae-Yun (School of Mechanical and Control Engineering, Handong Global University) ;
  • Kim, Daeho (School of Mechanical and Control Engineering, Handong Global University) ;
  • Lee, Kwon-Yeong (School of Mechanical and Control Engineering, Handong Global University)
  • 지대윤 (한동대학교 기계제어공학부) ;
  • 김대호 (한동대학교 기계제어공학부) ;
  • 이권영 (한동대학교 기계제어공학부)
  • Received : 2018.01.17
  • Accepted : 2018.04.06
  • Published : 2018.04.30

Abstract

This purpose of this research is to observe the influence of non-condensable gas (NCG) on a horizontal super-hydrophobic aluminum tube and compare it with a bare aluminum tube. To achieve super-hydrophobic characteristics, an aluminum tube was coated with a Self-Assembled Monolayer (SAM). The overall heat transfer coefficient U was used to represent the condensation performance. The NCG mass fraction was the main variable, and its range was 0.08 to 0.45. The condensation performance of the SAM tube and bare tube increased with decreasing mass fraction of NCG. The SAM tube showed 1.9 to 2.5 times larger dropwise condensation performance than the bare tube. When the mass fraction of NCG decreased in the SAM tube, the rate of increase of the SAM tube was lower because flooded condensation occurred. In addition, filmwise condensation occurred in the SAM tube when more active condensation was generated, and its performance was lower than that of the bare aluminum tube. The flooded and filmwise condensation in the SAM tube is explained by the pinning effect. In conclusion, controlling the condition of the condenser is necessary to improve the condensation performance by surface modification a SAM.

본 연구의 목표는 수평 관외 초소수성 튜브에서 비응축가스(NCG)의 영향을 관찰하고, 이를 일반 알루미늄 튜브의 응축 현상과 비교하는 것이다. 초소수성 튜브 제작을 위해 Self-Assembled Monolayer(SAM) 코팅으로 알루미늄 튜브의 외부를 표면개질 했다. 응축 성능을 나타내기 위해 총합 열전달계수를 사용하였고, 이 값으로 응축 성능을 비교 검토하였다. 본 연구의 주요 변수는 비응축가스 질량 분율로, 0.08에서 0.45의 범위에서 실험을 진행하였다. 응축 실험을 통해 비응축가스 질량 분율이 낮아질수록 응축 성능이 SAM 튜브와 일반 튜브에서 모두 향상되는 것을 확인했다. SAM 튜브에서 적응축 열전달 성능은 일반 튜브 대비하여 평균 약 1.9배에서 2.5배 정도 큰 것을 관찰하였다. SAM 튜브에서 비응축가스 질량 분율이 낮아지면서 응축 성능 상승폭이 감소하게 되는데, 이는 Flooded 응축 현상이 발현되었기 때문이다. 응축이 더 활발하게 진행되면 SAM 튜브에서 막응축이 일어나는 것을 관찰하였고, 이 때 성능은 일반 알루미늄 튜브보다도 저하된 성능을 보였다. SAM 알루미늄 튜브에서 Flooded 응축과 막응축이 일어나는 원인으로 표면에서의 Pinning 효과를 이용하여 설명하였다. 결론적으로, SAM 튜브를 실제 응축기에 적용해 표면개질로 인한 응축 성능 개선 효과를 얻기 위해서는 적응축 또는 Flooded 응축이 일어나는 조건으로 응축기 내 환경 조성을 해야 한다.

Keywords

References

  1. D. F. Othmer, "The condensation of steam," Indus. Eng. Chem., vol. 21, no. 6, pp. 577-583, June, 1929. DOI: https://doi.org/10.1021/ie50234a018
  2. D. G. Kroger, W. M. Rohsenow, "Condensation heat transfer in the presence of a non-condensable gas," Int. J. Heat Mass Transfer, vol. 11, no. 1 pp, 15-26, March, 1968. https://doi.org/10.1016/0017-9310(68)90060-4
  3. Bin Ren, L. Zhang, J. Cao, H. Xu, Z. Tao, "Experimental and theoretical investigation on condensation inside a horizontal tube with noncondensable gas," Int. J. Heat Mass Transfer, vol. 82, pp. 588-603, March, 2015. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.041
  4. Y. Liao, K. Vierow, "A generalized diffusion layer model for condensation of vapor with noncondensable gases," J. Heat Transfer-Trans. ASME, vol. 129, no. 8, pp. 988-994, September, 2007. https://doi.org/10.1115/1.2728907
  5. G. H. Tang, H. W. Hu, Z. N. Zhuang, W. Q. Tao, "Film condensation heat transfer on a horizontal tube in presence of a noncondensable gas," Applied Thermal Engineering, vol. 36, pp. 414-425, April, 2012. DOI: https://doi.org/10.1016/j.applthermaleng.2011.10.058
  6. J. B. Lee, H. M. Joo, M. H. Cho, S. H. Lee, C. K. Choi, "Characteristics of Droplet Growth Behavior on Hydrophobic Micro-textured Surfaces," Journal of Heat Transfer, vol. 137, no. 8, pp. 080906, August, 2015. DOI: https://doi.org/10.1115/1.4030453
  7. H. W. Hu, G. H. Tang, "Theoretical investigation of stable dropwise condensation heat transfer on a horizontal tube," Applied Thermal Engineering, vol. 62, no. 2, pp. 671-679, January, 2014. DOI: https://doi.org/10.1016/j.applthermaleng.2013.10.022
  8. N. Miljkovic, Y. Nam, K. Lopez, N. Dou, J. Sack, E. N. Wang, "Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces," Nano Letters, vol. 13, no. 1, pp. 179-187, 2012. DOI: https://doi.org/10.1021/nl303835d
  9. X. Ma, S. Wang, Z. Lan, A. Wang, B. Peng, "Dropwise condensation transfer on superhydrophobic surface in the presence of non-condensable gas," International Heat Transfer Conference, pp. 71-79, 2010. DOI: https://doi.org/10.1115/IHTC14-22248
  10. R. D. Narhe, D. A. Beysens, "Water condensation on a super-hydrophobic spike surface," Europhys. Lett., vol. 75, no. 1, pp. 98-104, May, 2006. DOI: https://doi.org/10.1209/epl/i2006-10069-9
  11. W. M. Rohsenow, "Heat transfer and temperature distribution in laminar film condensation," Trans. ASME, vol. 78, pp. 1645-1648, 1956.
  12. W. Kwak, W. Hwang, "Facile method for preparing superoleophobic surfaces with hierarchical microcubic/ nanowire structures," Nanotechnology, vol. 27, no. 5, pp. 055301, 2016. DOI: https://doi.org/10.1088/0957-4484/27/5/055301