DOI QR코드

DOI QR Code

Development of Antifreeze Concentration Control device for Solar Heat Energy System

태양열에너지 시스템용 부동액 농도 제어 장치의 개발

  • Seo, Choong-Kil (Division Department of Automotive & Mechanical Engineering, Howon University) ;
  • Won, Joung Wun (Division Department of Automotive & Mechanical Engineering, Howon University)
  • 서충길 (호원대학교 자동차기계공학과) ;
  • 원종운 (호원대학교 자동차기계공학과)
  • Received : 2018.01.25
  • Accepted : 2018.04.06
  • Published : 2018.04.30

Abstract

The gases emitted from internal combustion engines using fossil fuels are causing many social problems, such as environmental pollution, global warming, and adverse health effects on the human body. In recent years, the demand for renewable energy has increased, and government policy support and research and development are also active. In the collecting part of a solar energy system, which is widely used at home, propylene glycol (PG) (anti-freeze), as a heating medium, is mixed with water at a fixed value of 50%, and the heat is transferred to the collecting part at subzero temperatures. On the other hand, when leakage occurs in the heat medium in the heat collecting part, supplemental water is supplied to the solar heat collecting part due to the characteristics of the solar heat system, so that the concentration of antifreeze in the replenishing water becomes low. As a result, the temperature of the solar heat collecting part is lowered resulting in a frost wave, which causes economic damage. The purpose of this study was to develop a device capable of controlling the antifreeze concentration automatically in response to a temperature drop to prevent freezing of the heat collecting part generated in the solar energy system. The electrical conductivity of the H2O component was larger than that of PG, and the resistance increased with decreasing temperature. The PG concentration control values of 40, 50, and 60% should be controlled through calibration with a PG concentration of 39.6, 50.7, and 60.1%.

화석연료를 사용하는 내연기관에서 배출되는 가스는 환경오염, 지구온난화와 인체에 유해하여 많은 사회적인 문제를 야기시키고 있다. 최근에는 신재생에너지의 수요가 증가하고 있으며, 정부의 정책적인 지원과 연구개발 또한 활발하다. 가정에서 많이 사용되는 태양열에너지 시스템의 집열부는 열매체로 프로필렌글리콜 부동액이 물과 50% 고정된 값으로 혼합되어 영하온도에서도 집열부에 열을 전달한다. 그러나 집열부 내의 열매체에 누수가 발생되면 태양열시스템 특성상 보충수를 태양열 집열부에 공급하는데, 이로 인하여 보충수 내의 급수로 인하여 부동액 농도가 낮아지게 된다. 이에 따라 태양열 집열부위의 온도가 저하되어 동파를 야기하게 되는데 태양열에너지 시스템 정비 보수를 위해서 비용 부담이 증가하여 많은 문제점을 증가시킨다. 이 연구는 태양열에너지 시스템에 발생되는 동파 방지를 위하여 온도 저하에 따라 자동으로 부동액 농도를 제어가능한 장치를 개발하는 것이다. 물 성분이 프로필렌글리콜보다 전기전도도가 크며, 온도가 저온으로 내려갈수록 저항값이 증가하였다. 프로필렌글리콜 농도 제어 목표값 40, 50 및 60% 값은 39.6, 50.7 및 60.1%의 프로필렌글리콜 농도값으로 보정을 통하여 제어를 해야 한다.

Keywords

References

  1. C. K. Seo, "Research on Improvement of CH4 Reduction Performance of NGOC for CNG Bus", Journal of the Korea Academia-Industrial cooperation Society, vol. 18, no. 5. pp. 708-715, 2017. DOI: http://doi.org/10.5762/KAIS.2017.18.5.708
  2. C. K. Seo, J. W. "Flow and Electricity Power Characteristics of Hydraulic Turbine for Power Generation with Geothermal Energy System", Won, Journal of the Korean Society for Power System Engineering, vol. 19, no. 1, pp. 24-30, 2015. DOI: https://doi.org/10.9726/kspse.2015.19.1.024
  3. M. Bravi, R. Basosi, "Environmental Impact of Electricity from selected Geothermal Power Plants in Italy", Journal of Cleaner Production, vol. 66, no. 2, pp. 301-308. 2014. DOI: https://doi.org/10.1016/j.jclepro.2013.11.015
  4. H. Hofmann, S. Weides, T. Babadagli, G. Zimmermann, I. Moeck, J. Majorowicz, M. Unsworth, "Potential for Enhanced Geothermal System in Alberta, Canada", Energy, vol. 69, no. 6, pp. 578-591. 2014. DOI: https://doi.org/10.1016/j.energy.2014.03.053
  5. J. L. Fannou, C. Rousseau, L. Lamarche, K. Stanislaw, "Experimental analysis of a direct expansion geothermal heat pump in heating mode" Energy and Buildin", Energy and Buildings, vol. 75, no. 4, pp. 290-300, 2014. DOI: https://doi.org/10.1016/j.enbuild.2014.02.026
  6. J. S. Kim, C. K. Lee, "A Study of the Influence of Condensing Water Temperature on Low Temperature Geothermal Power Generation", Korea Society of Geothermal Energy Engineers, vol. 3, no. 7, pp. 17-23, 2017.
  7. K. W. Choi, D. H. Ahn, J. H. Boo, "Influence of temperature gradient induced by concentrated solar thermal energy on the power generation performance of a thermoelectric module", Journal of the Korea Academia-Industrial cooperation Society, vol. 18, no. 10. pp. 777-784, 2017. DOI: http://doi.org/10.5762/KAIS.2017.18.10.777
  8. M. S. Hye, S. S. Jik, "A Fundamental Study of BIPV System Functioned as Sollar Collector for Buildings Application", Journal of the Korean Solar Energy Society, vol. 27, no. 1, pp. 91-98, 2007.
  9. B. N. Choon, L. J. Kook, Y. C. Kyun, Y. E. Sang, Y. J. Ho, "A Study on the Operating Characteristics of Solar Collecting System in Solar Thermal/Geothermal Hybrid System with Facade Integrated Solar Collector", Journal of the Korean Solar Energy Society, vol. 30, no. 5, pp. 69-76, 2010.
  10. S. Y. Lim, S. Y. Park, S. H. Yoo, "The Economic Effects of the New and Renewable Energies Sector", Journal of Energy Engineering, vol. 23, no. 4, pp. 31-40, 2014. DOI: https://doi.org/10.5855/ENERGY.2014.23.4.031
  11. J. H. Lee, H. Oh, J. S. Kim, D. W. Kim, W. S. Park, "Development of geothermal exchanger for efficiency improvement of solar cell module", Journal of the Korea Academia-Industrial cooperation Society, vol. 16, no. 4, pp. 2966-2970, 2015. DOI: http://doi.org/10.5762/KAIS.2015.16.4.2966
  12. http://woosungchemical.com.
  13. http://www.core21.co.kr.