DOI QR코드

DOI QR Code

The Effect of External DC Electric Field on the Atmospheric Corrosion Behaviour of Zinc under a Thin Electrolyte Layer

  • Liang, Qinqin (Guangxi Power Grid Electric Power Research Institute) ;
  • YanYang, YanYang (Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power) ;
  • Zhang, Junxi (Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power) ;
  • Yuan, Xujie (Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power) ;
  • Chen, Qimeng (Shanghai Key Laboratory of Material Protection and Advanced Material in Electric Power, Shanghai University of Electric Power)
  • Received : 2018.11.14
  • Accepted : 2018.04.05
  • Published : 2018.04.30

Abstract

The effect of external DC electric field on atmospheric corrosion behavior of zinc under a thin electrolyte layer (TEL) was investigated by measuring open circuit potential (OCP), cathodic polarization curve, and electrochemical impedance spectroscopy (EIS). Results of OCP vs. time curves indicated that the application of external DC electric field resulted in a negative shift of OCP of zinc. Results of cathodic polarization curves measurement and EIS measurement showed that the reduction current of oxygen increased while charge transfer resistance ($R_{ct}$) decreased under the external DC electric field. Variation of OCP negative shift, reduction current of oxygen, and $R_{ct}$ increase with increasing of external DC electric field strength as well as the effect of external DC electric field on double-layer structure in the electrode/electrolyte interface and ions distribution in thin electrolyte layer were analyzed. All results showed that the external DC electric field could accelerate the corrosion of zinc under a thin electrolyte layer.

Keywords

References

  1. D. T. Chin and T. W. Fu, Corrosion, 35, 514 (1979). https://doi.org/10.5006/0010-9312-35.11.514
  2. J. L. Wendt and D. T. Chin, Corros. Sci., 25, 901 (1985). https://doi.org/10.1016/0010-938X(85)90020-4
  3. R. Radeka, D. Zorovic, and D. Barisin, Anti-Corros. Method. M., 27, 13 (1980).
  4. D. K. Kim, S. Muralidharan, T. H. Ha, J. H. Bae, Y. C. Ha, H. G. Lee, and J. D. Scantlebury, Electrochim. Acta, 51, 5259 (2006). https://doi.org/10.1016/j.electacta.2006.01.054
  5. S. Muralidharan, D. K. Kim, T. H. Ha, J. H. Bae, Y. C. Ha, H. G. Lee, and J. D. Scantlebury, Desalination, 216, 103 (2007). https://doi.org/10.1016/j.desal.2006.11.021
  6. S. Goidanich, L. Lazzari, and M. Ormellese, Corros. Sci., 52, 491 (2010). https://doi.org/10.1016/j.corsci.2009.10.005
  7. R. W. Bosch, and W. F. Bogaerts, Corros. Sci., 40, 323 (1998). https://doi.org/10.1016/S0010-938X(97)00139-X
  8. C. M. Movley, Proc. Corrosion 2005 Conf., pp. 1 - 8, Houston, Texas, NACE (2005).
  9. A. P. Yadav, A. Nishikata, and T. Tsuru, Corros. Sci., 46, 169 (2004). https://doi.org/10.1016/S0010-938X(03)00130-6
  10. V. Barranco. S. Feliu Jr, and S. Feliu, Corros. Sci., 46, 2221 (2004). https://doi.org/10.1016/j.corsci.2003.09.033
  11. H. L. Huang, X. P. Guo, and Z. H. Dong, Corros. Sci., 53, 1700 (2011). https://doi.org/10.1016/j.corsci.2011.01.031
  12. Y. L. Cheng, F. H. Cao, J. F. Li, J. Q. Zhang, J. M. Wang, and C. N. Cao, Corros. Sci., 46, 1649 (2004). https://doi.org/10.1016/j.corsci.2003.10.005
  13. H. L. Huang, Z. Q. Pan, X. P. Guo, and Y. B. Qiu, Corros. Sci., 75, 100 (2013). https://doi.org/10.1016/j.corsci.2013.05.019
  14. T. H. Muster and I. S. Cole, Corros. Sci., 46, 2319 (2004). https://doi.org/10.1016/j.corsci.2004.01.002
  15. B. Zhang, H. B. Zhou, E. H. Han, and K. Wei, Electrochim. Acta, 54, 6598 (2009). https://doi.org/10.1016/j.electacta.2009.06.061
  16. A.P. Yadav, A. Nishikata, and T. Tsuru, J. Electroanal. Chem., 585, 142 (2005). https://doi.org/10.1016/j.jelechem.2005.08.007
  17. D. L. Klass, J. Appl. Phys., 38, 67 (1967). https://doi.org/10.1063/1.1709013
  18. D. L. Klass, J. Appl. Phys., 38, 75 (1967). https://doi.org/10.1063/1.1709014
  19. H. Block and J. P. Kelly, J. Phys. D: Appl. Phys., 21, 1661 (1988). https://doi.org/10.1088/0022-3727/21/12/001
  20. T. C. Jordan, IEEE T. Electr. Insul., 24, 849 (1989). https://doi.org/10.1109/14.42162
  21. D. Y. Gao, Yuxi Col. J., 8, 82 (1986).
  22. A. Panchenko, M. T. M. Koper, T. E. Shubina, S. J. Mitchell, and E. Roduner, J. Electrochem. Soc., 151, A2016 (2004). https://doi.org/10.1149/1.1809586