DOI QR코드

DOI QR Code

남중국해 지역 실시간 해양 조석 및 폭풍해일 시뮬레이션

Regional Realtime Ocean Tide and Storm-surge Simulation for the South China Sea

  • 김경옥 (한국해양과학기술원 해양환경방사능연구센터) ;
  • 최병호 (성균관대학교 건설환경공학부) ;
  • 이한수 (일본 히로시마대학) ;
  • 육진희 (한국과학기술정보연구원 계산과학응용센터)
  • Kim, Kyeong Ok (Marine Radionuclide Research Center, Korea Institute of Ocean Science & Technology) ;
  • Choi, Byung Ho (Department of Civil and Environmental Engineering, Sungkyunkwan University) ;
  • Lee, Han Soo (Graduate School for International Development and Cooperation (IDEC), Hiroshima University) ;
  • Yuk, Jin-Hee (Center for Applied Scientific Computing, Korea Institute of Science and Technology Information)
  • 투고 : 2018.03.07
  • 심사 : 2018.04.16
  • 발행 : 2018.04.30

초록

남중국해는 심해 분지, 대륙 붕단, 얕은 대륙붕, 많은 해협, 복잡한 수심 특징을 가진 전형적인 연안 영해이다. 본 연구에서는, 비구조 격자 기반으로 대상 해역을 상세하게 해상할 수 있으며, 개방경계에 조석을, 해표면에 기상자료를 입력하여 조석 및 폭풍해일을 모의할 수 있는 수치 모델을 구축하여 남중국해의 조석 특성과 전파 양상을 조사하고, 태풍에 의한 폭풍해일을 재현하였다. 태풍에 의한 폭풍해일 모의는, 2013년에 필리핀에 막대한 피해를 초래하였던 태풍 하이옌에 대해서 수행하였다. 관측치 및 선행 연구의 조석 분포와의 비교 결과, 4개의 주요 분조의 진폭과 위상은 대체적으로 잘 모의되었다. 선행 연구들에 따르면, 당 해역은 모델을 이용하여 조석을 예측하기가 어렵다고 보고되고 있는데, 이 점을 감안한다면 본 연구에서 예측한 조석은 허용 범위에 있다고 생각된다. 본 연구에서 수행한 자유 진동 모드 실험을 통해서 남중국해가 일주조 조석이 우세한 이유를 알 수 있었으며, 조석 잔차류(tidal residual current) 및 총에너지 소실(total energy dissipation) 산정을 통해서 조석 및 퇴적환경을 파악하였다. 본 연구에서 구축한 모델을 이용하여 태풍 하이옌에 의한 폭풍해일을 타당하게 모의하였으며, 모델 검증 및 조석 환경 규명을 통하여 남중국해의 지역 실시간 순압 조석/수위 예측 시스템을 구축하였다.

The South China Sea (SCS) is a typical marginal sea characterized with the deep basin, shelf break, shallow shelf, many straits, and complex bathymetry. This study investigated the tidal characteristics and propagation, and reproduced typhoon-induced storm surge in this region using the regional real-time tide-surge model, which was based on the unstructured grid, resolving in detail the region of interest and forced by tide at the open boundary and by wind and air pressure at the surface. Typhoon Haiyan, which occurred in 2013 and caused great damage in the Philippines, was chosen as a case study to simulate typhoon's impact. Amplitudes and phases of four major constituents were reproduced reasonably in general, and the tidal distributions of four constituents were similar to the previous studies. The modelled tide seemed to be within the acceptable levels, considering it was difficult to reproduce the tide in this region based on the previous studies. The free oscillation experiment results described well the feature of tide that the diurnal tide is prevailing in the SCS. The tidal residual current and total energy dissipation were discussed to understand the tidal and sedimentary environments. The storm-surge caused by typhoon Haiyan was reasonably simulated using this modeling system. This study established the regional real-time barotropic tide/water level prediction system for the South China Sea including the seas around the Philippines through the validation of the model and the understanding of tidal characteristics.

키워드

참고문헌

  1. Akdag, C. (1996). Tidal analysis of the South China Sea, Master Thesis. Delft University of Technology.
  2. Azmy, A.R., Isoda, Y. and Yanagi, T. (1990). M2 tide around west Malaysia. Memoirs of the Faculty of Eng., Ehime Univ. XII, 1, 137-147.
  3. Cai, S., Long, X., Liu, H. and Wang, S. (2006). Tide model evaluation under different conditions. Continental Shelf Research, 26, 104-112. https://doi.org/10.1016/j.csr.2005.09.004
  4. Cao, D. and Fang, G. (1990). A numerical model for tides and tidal currents in northern South China Sea. Tropic Oceanology, 9, 63-70 (in Chinese with English abstract).
  5. Cartwright, D. (2003). The Tonkin tides revisited. Notes Rec. R. Soc. Lond., 57(2), 135-142. https://doi.org/10.1098/rsnr.2003.0201
  6. Choi, B.H. (1980). A tidal model of the Yellow Sea and the Eastern China Sea. Korean Ocean Res. Development Inst., Report, 80-02.
  7. Choi, B.H. and Yuk, J.H. (2003). Changes in free oscillation mode in Isahaya Bay due to a barrier. Proceedings of the Korean Society of Coastal and Ocean Engineers Conference, 14, 250-269.
  8. Clarke, A.J. and Battisti, D.S. (1981). The effect of continental shelves on tides. Deep-Sea Research, 28, 665-682. https://doi.org/10.1016/0198-0149(81)90128-X
  9. Davis, C. and Low-Nam, S. (2001). The NCAR-AFWA tropical cyclone bogussing scheme, technical report, Air Force Weather Agency, Offutt Air Force Base, Nebr.
  10. Egbert, G.D. and Ray, R.D. (2000). Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775-778. https://doi.org/10.1038/35015531
  11. Fang, G. Kwok, Y.-K., Yu, K. and Zhu, Y. (1999). Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Continental Shelf Research, 19, 845-869. https://doi.org/10.1016/S0278-4343(99)00002-3
  12. Holland, G.J. (1980). An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 108(8), 1212-1218. https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
  13. Kim, K.O. (2015). Typhoon storm surge simulation for typhoon Haiyan. Journal of International Development and Cooperation, 21, 17-25.
  14. Manh, D.V. and Yanagi, T. (2000). A study on residual flow in the Gulf of Tongking. J. Oceanogr., 56, 59-68. https://doi.org/10.1023/A:1011162524466
  15. Matsumoto, K., Takanezawa, T. and Ooe, M. (2000). Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. Journal of Oceanography, 56, 567-581. https://doi.org/10.1023/A:1011157212596
  16. Minh, N.N., Patrick, M., Florent, L., Sylvain, O., Gildas, C., Damien, A. and Uu, D.V. (2014). Tidal characteristics of the gulf of Tonkin. Continental Shelf Research, 91, 37-56. https://doi.org/10.1016/j.csr.2014.08.003
  17. Mori, N., Kato, M., Kim, S., Mase, H., Shibutani, Y., Takemi, T., Tsuboki, K. and Yasuda, T. (2014). Local amplification of storm surge by super Typhoon Haiyan in Leyte Gulf. Geophysical Research Letters, 41, 5106-5113. https://doi.org/10.1002/2014GL060689
  18. NDRRMC (2014). Final report effects of typhoon Yolanda (Haiyan). National Disaster Risk Reduction and Management Council, 85.
  19. Rabinovich, A.B. (2009). Seiches and harbor oscillations. In: Kim, Y.C. (Ed.). Hand-book of Coastal and Ocean Engineering. World Scientific, Singapore, 193-236.
  20. Roos, A. (1989). IHE course 1989-1990, Lecture Notes on Tides.
  21. Tajima, Y., Yasuda, T., Pacheco, B.M., Cruz, E.C., Kawasaki, K., Nobuoka, H., Miyamoto, M., Asano, Y., Arikawa, T., Ortigas, N.M., Aquino, R., Mata, W., Valdez, J. and Briones, F. (2014). Initial report of JSCE-PICE joint survey on the storm surge disaster caused by Typhoon Haiyan. Coastal Engineering Journal, 56(1). http://dx.doi.org/10.1142/.
  22. Thuy, N.N. (1968). Some peculiarities of the pormation of tidal phenomena in the South China Sea. Okeanologia, 9(2), 222-230.
  23. van Maren, D.S., Hoekstra, P. and Hoitink, A.J.F. (2004). Tidal flow asymmetry in the diurnal regime: Bed load transport and morphologic changes around the Red River Delta. Ocean Dynamics, 54, 424-434.
  24. van Maren, D.S. and Gerritsen, H. (2012). Residual flow and tidal asymmetry in the Singapore Strait, with implications for resuspension and residual transport of sediment. J. Geophys. Res., 117(C4), doi: 10.1029/2011JC007615.
  25. Weaver, R.J. (2004). Effect of wave forces on storm surge. Master Thesis, University of Florida, Department of Civil and Coastal Engineering.
  26. Wyrtki, K. (1961). Physical oceanography of the southeast Asian waters, NAGA report, Scripps Institution of Oceanography.
  27. Yanagi, T. and Takao, T. (1998a). Clockwise phase propagation of semi-diurnal tides in the Gulf of Thailand. Journal of Oceanography, 54, 143-150. https://doi.org/10.1007/BF02751690
  28. Yanagi, T. and Takao, T. (1998b). Seasonal variation of threedimensional circulations in the Gulf of Thailand. La Mer, 36, 43-55.
  29. Ye, A.L. and Robinson, I.S. (1983). Tidal dynamics in the South China Sea, Geophys. J. R. Astr. Soc., 72, 691-707. https://doi.org/10.1111/j.1365-246X.1983.tb02827.x
  30. Yuk, J.-H., Choi, B.H. and Kim, K.O. (2011). Changes of tides in Isahaya Bay due to a barrier. KSCE Journal of Civil Engineering, 15(3), 427-437. https://doi.org/10.1007/s12205-011-1039-6
  31. Zhang, Y. and Baptista, A.M. (1999). SELFE: A semi-implicit Eulerian-Lagrangian finitie-element model for cross-scale ocean circulation. Ocean Modelling, 23, 71-96.
  32. Zhang, Y.L., Baptista, A.M. and Myers, E.P. (2004). A cross-scale model for 1729 3D baroclinic circulation in estuary-plume-shelf systems: I. Formulation and skill assessment. Cont. Shelf Res., 24, 2187-2214. https://doi.org/10.1016/j.csr.2004.07.021
  33. Zu, T., Gan, J. and Erofeeva, S.Y. (2008). Numerical study of the tide and tidal dynamics in the South China Sea. Deep-Sea Research I, 55, 137-154.