DOI QR코드

DOI QR Code

정상류하 침투·이류 분산 해석을 이용한 폐기물 해상최종처리장 차수시스템의 최적 성능 평가

Evaluation of Optimal Performance of Hydraulic Barriers in Offshore Landfill using Seepage-Advection-Dispersion Analysis under Steady State Flow

  • 황웅기 (한국해양대학교 건설공학과) ;
  • 오명학 (한국해양과학기술원 연안방재연구센터) ;
  • 김태형 (한국해양대학교 건설공학과) ;
  • 김향은 ((주)지오알앤디)
  • Hwang, Woong-Ki (Dept. of Civil Eng., Korea Maritime and Ocean Univ.) ;
  • Oh, Myoung-Hak (Coastal Disaster Prevention Research Center, Korea Institution of Ocean Science & Technology) ;
  • Kim, Tae-Hyung (Dept. of Civil Eng., Korea Maritime and Ocean Univ.) ;
  • Kim, Hyang Eun (Geo R&D Co. Ltd.)
  • 투고 : 2018.03.09
  • 심사 : 2018.04.09
  • 발행 : 2018.04.30

초록

본 연구는 정상류 조건에서 폐기물 해상최종처리장에서의 오염원의 누출 방지에 필요한 최적의 최소기준을 제안하기 위하여 각각 바닥 및 연직 차수시스템의 기본적인 차수공에 대하여 침투 이류 분산해석을 수행하였다. 연구 결과 바닥 차수시스템의 최소기준으로 투수계수 $1{\times}10^{-6}cm/s$ 이하인 불투수성 지층이 두께 500 cm 이상이거나 이와 동등한 차수효과를 가진 차수시스템이어야 한다. 연직 차수시스템의 최소기준으로 투수계수 $1{\times}10^{-6}cm/s$ 이하인 두께 50 cm 이상이거나 이와 동등한 차수효과를 가진 차수시스템을 설치하여야 한다. 또한, 연직 차수시스템은 바닥 차수시스템과 일체가 되어 차수기능을 발휘하도록 충분한 근입깊이가 필요하다.

This study was conducted to propose the optimum minimum requirement of cutoff system composed of the impermeable soil layer and vertical barrier in offshore landfill for prevention pollution leakage by seepage, advection, and dispersion numerical analyses under steady state. According to the study results, the minimum requirement of impermeable soil layer is below $1{\times}10^{-6}cm/s$ of hydraulic conductivity with more than 500 cm thickness or a system with equivalent cutoff effect. The minimum requirement of vertical barrier is below $1{\times}10^{-6}cm/s$ of hydraulic conductivity with more than 50 cm thickness or a system with equivalent cutoff effect. In addition, the vertical barrier should be embedded enough to seal securely with the impermeable soil layer for working cutoff effect.

키워드

참고문헌

  1. Devlin, J.F. and Parker, B.L. (1996). Optimum hydraulic conductivity to limit contaminant flux through cutoff walls. Groundwater, 34(4), 719-726. https://doi.org/10.1111/j.1745-6584.1996.tb02060.x
  2. Foose, G.J. (2010). A steady-state approach for evaluating the impact of solute transport through composite liners on groundwater quality. Waste Management, 30(8-9), 1577-1586. https://doi.org/10.1016/j.wasman.2010.02.027
  3. GEO-SLOPE (2012a). Seepage modeling with SEEP/W. GEOSLOPE International Ltd.
  4. GEO-SLOPE (2012b). Contaminant modeling with CTRAN/W. GEO-SLOPE International Ltd.
  5. Kwon, O., Oh, M. and Chae, K.S. (2012). Guidelines for the design, construction, and management of managed wastes reclaimed embankment, CIR publishing.
  6. Mitchell, J.K. and Rumer, R.R. (1997). Waste containment barriers : evaluation of the technology, in situ remediation of the geoenvironment. J.C. Evans eds., Geotechnical Special Publication No. 71, ASCE, 1-25.
  7. Neville, C.J. and Andrews, C.B. (2006). Containment criterion for contaminant isolation by cutoff Walls. Groundwater, 44(5), 682-686.
  8. Rubin, H. and Rabideau, A.J. (2000). Approximate evaluation of contaminant transport through vertical barriers. Journal of Contaminant Hydrology, 40(4), 311-333. https://doi.org/10.1016/S0169-7722(99)00060-1
  9. Korea Environment Corporation (2016). Waste materials and disposal in Korea (2015), Keco2016-PE10-24, pp. 1-1257.
  10. Ministry of Environment (2016). Wastes control act: Enforcement regulations.