DOI QR코드

DOI QR Code

CRITICAL VIRTUAL MANIFOLDS AND PERVERSE SHEAVES

  • Kiem, Young-Hoon (Department of Mathematics and Research Institute of Mathematics Seoul National University) ;
  • Li, Jun (Department of Mathematics Stanford University)
  • Received : 2017.06.05
  • Accepted : 2017.10.31
  • Published : 2018.05.01

Abstract

In Donaldson-Thomas theory, moduli spaces are locally the critical locus of a holomorphic function defined on a complex manifold. In this paper, we develop a theory of critical virtual manifolds which are the gluing of critical loci of holomorphic functions. We show that a critical virtual manifold X admits a natural semi-perfect obstruction theory and a virtual fundamental class $[X]^{vir}$ whose degree $DT(X)=deg[X]^{vir}$ is the Euler characteristic ${\chi}_{\nu}$(X) weighted by the Behrend function ${\nu}$. We prove that when the critical virtual manifold is orientable, the local perverse sheaves of vanishing cycles glue to a perverse sheaf P whose hypercohomology has Euler characteristic equal to the Donaldson-Thomas type invariant DT(X). In the companion paper, we proved that a moduli space X of simple sheaves on a Calabi-Yau 3-fold Y is a critical virtual manifold whose perverse sheaf categorifies the Donaldson-Thomas invariant of Y and also gives us a mathematical theory of Gopakumar-Vafa invariants.

Keywords

References

  1. K. Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307-1338. https://doi.org/10.4007/annals.2009.170.1307
  2. K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45-88. https://doi.org/10.1007/s002220050136
  3. A. A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, in Analysis and topology on singular spaces, I (Luminy, 1981), 5-171, Asterisque, 100, Soc. Math. France, Paris, 1982.
  4. O. Ben-Bassat, C. Brav, V. Bussi, and D. Joyce, A 'Darboux theorem' for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol. 19 (2015), no. 3, 1287-1359. https://doi.org/10.2140/gt.2015.19.1287
  5. C. Brav, V. Bussi, D. Dupont, D. Joyce, and B. Szendroi, Symmetries and stabilization for sheaves of vanishing cycles. With an appendix by Jorg Schurmann, J. Singul. 11 (2015), 85-151.
  6. H. Chang and J. Li, Semi-perfect obstruction theory and Donaldson-Thomas invariants of derived objects, Comm. Anal. Geom. 19 (2011), no. 4, 807-830. https://doi.org/10.4310/CAG.2011.v19.n4.a6
  7. P. Deligne, Theoreme de Lefschetz et criteres de degenerescence de suites spectrales, Inst. Hautes Etudes Sci. Publ. Math. No. 35 (1968), 259-278.
  8. A. Dimca, Sheaves in Topology, Universitext, Springer-Verlag, Berlin, 2004.
  9. R. Gopakumar and C. Vafa, M-Theory and Topological Strings II, arXiv:9812127.
  10. M. Goresky and R. MacPherson, Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77-129. https://doi.org/10.1007/BF01389130
  11. P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978.
  12. R. Hotta, K. Takeuchi, and T. Tanisaki, D-modules, perverse sheaves, and representation theory, translated from the 1995 Japanese edition by Takeuchi, Progress in Mathematics, 236, Birkhauser Boston, Inc., Boston, MA, 2008.
  13. L. Illusie, Complexe cotangent et deformations. I, II, Lecture Notes in Mathematics, Vol. 239 and Vol. 283, Springer-Verlag, Berlin, 1971 and 1972.
  14. D. Joyce, A classical model for derived critical loci, J. Differential Geom. 101 (2015), no. 2, 289-367. https://doi.org/10.4310/jdg/1442364653
  15. D. Joyce and Y. Song, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217 (2012), no. 1020, iv+199 pp.
  16. M. Kashiwara and P. Schapira, Sheaves on Manifolds, corrected reprint of the 1990 original, Grundlehren der Mathematischen Wissenschaften, 292, Springer-Verlag, Berlin, 1994.
  17. Y.-H. Kiem and J. Li, Categorification of Donaldson-Thomas invariants via perverse sheaves, Preprint, arXiv:1212.6444.
  18. F. Kirwan and J. Woolf, An introduction to Intersection Homology Theory, second edition, Chapman & Hall/CRC, Boca Raton, FL, 2006.
  19. R. MacPherson and K. Vilonen, Elementary construction of perverse sheaves, Invent. Math. 84 (1986), no. 2, 403-435. https://doi.org/10.1007/BF01388812
  20. D. B. Massey, The Sebastiani-Thom isomorphism in the derived category, Compositio Math. 125 (2001), no. 3, 353-362. https://doi.org/10.1023/A:1002608716514
  21. A. Parusinski and P. Pragacz, Characteristic classes of hypersurfaces and characteristic cycles, J. Algebraic Geom. 10 (2001), no. 1, 63-79.
  22. M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849-995. https://doi.org/10.2977/prims/1195173930
  23. M. Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221-333. https://doi.org/10.2977/prims/1195171082
  24. M. Saito, D-modules on analytic spaces, Publ. Res. Inst. Math. Sci. 27 (1991), no. 2, 291-332. https://doi.org/10.2977/prims/1195169840
  25. C. Schnell, An overview of Morihiko Saito's theory of mixed Hodge modules, Preprint, arXiv:1405.3096.
  26. R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations, J. Differential Geom. 54 (2000), no. 2, 367-438. https://doi.org/10.4310/jdg/1214341649