References
- Aagaah, M.R., Mahinfalah, M. and Jazar, G.N. (2006), "Natural frequencies of laminated composite plates using third order shear deformation theory", Comput. Struct., 72(3), 273-279 https://doi.org/10.1016/j.compstruct.2004.11.012
- Andakhshideh, A., Maleki, S. and Aghdam, M.M. (2010), "Non-linear bending analysis of laminated sector plates using generalized differential quadrature", Comput. Struct., 92(9), 2258-2264. https://doi.org/10.1016/j.compstruct.2009.08.007
- Asadi, E. and Fariborz, S.J. (2012), "Free vibration of composite plates with mixed boundary conditions based on higher-order shear deformation theory", Arch. Appl. Mech., 82(6), 755-766. https://doi.org/10.1007/s00419-011-0588-y
- Ashour, A.S. (2004), "Vibration of variable thickness plates with edges elastically re-strained against translation and rotation", Thin-Wall. Struct., 42, 1-24. https://doi.org/10.1016/S0263-8231(03)00127-7
- Chang, S. (2000), "Differential Quadrature and its Applications in Engineering", Springer-Verlag London Limited, London, UK.
- Civalek, O. (2008), "Analysis of thick rectangular plates with symmetric cross-ply laminates based on first-order shear deformation theory", J. Compos. Mater., 42(26), 2853-2867. https://doi.org/10.1177/0021998308096952
- Civalek, O. (2008), "Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method", Finite Elem. Anal. Des., 44(12-13), 725-731. https://doi.org/10.1016/j.finel.2008.04.001
- Civalek, O., Korkmaz, A. and Demir, C. (2010), "Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two opposite edges", Adv. Eng. Softw., 41(4), 557-560. https://doi.org/10.1016/j.advengsoft.2009.11.002
- Ferreira, A.J.M. and Fasshauer, G.E. (2007), "Analysis of natural frequencies of composite plates by an RBF-pseudospectral method", Comput. Struct., 79(2), 202-210. https://doi.org/10.1016/j.compstruct.2005.12.004
- Gorman, D.J. (1997), "Free vibration analysis of Mindlin plates with uniform elastic edge support by the superposition method", J. Sound Vib., 207(3), 335-350. https://doi.org/10.1006/jsvi.1997.1107
- Gurses, M., Civalek, O. Korkmaz, A. and Ersoy, E. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Numer. Method. Eng., 79(3), 290-313. https://doi.org/10.1002/nme.2553
- Hsu, M.H. (2010), "Vibration analysis of orthotropic rectangular plates on elastic foundations", Comput. Struct., 92(4), 844-852. https://doi.org/10.1016/j.compstruct.2009.09.015
- Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Comput. Struct., 53(1), 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X
- Kapuria, S. and Achary, G.G.S. (2005), "A coupled zigzag theory for the dynamics of piezoelectric hybrid cross-ply plates", Arch. Appl. Mech., 75(1), 42-57. https://doi.org/10.1007/s00419-005-0386-5
- Karami, G. and Malekzadeh, P. (2002), "Static and stability analysis of arbitrary straight-sided quadrilateral thin plates by DQM", Int. J. Solids Struct., 39(19), 4927-4947. https://doi.org/10.1016/S0020-7683(02)00403-1
- Karami, G., Malekzadeh, P. and Mohebpour, S.R. (2006), "DQM free vibration analysis of moderately thick symmetric laminated plates with elastically restrained edges", Comput. Struct., 74(1), 115-125. https://doi.org/10.1016/j.compstruct.2006.02.014
- Khanm I.A. and Awari, G.K. (2015), "Harmonic analysis of square plate with and without uncertain parameters", Int. J. Recent Inn. Trends Comput. Comm., 3(2), 13-16
- Khdeir, A.A. (1989), "Free vibration and buckling of unsymmetric cross-ply laminated plates using a refined theory", J. Sound Vib., 128(3), 377-395. https://doi.org/10.1016/0022-460X(89)90781-5
- Li, K.M. and Yu, Z. (2009), "A simple formula for predicting resonant frequencies of a rectangular plate with uniformly restrained edges", J. Sound Vib., 327(1-2), 254-268. https://doi.org/10.1016/j.jsv.2009.06.011
- Li, W.L., Zhang, X., Du, J. and Liu, Z. (2009), "An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports", J. Sound Vib., 321(1-2), 254-269. https://doi.org/10.1016/j.jsv.2008.09.035
- Liew, K.M., Han, J.B. and Xiao, Z.M. (1996), "Differential quadrature method for thick symmetric cross-ply laminates with first-order shear exibility", Int. J. Solids Struct., 33(18), 2647-2658. https://doi.org/10.1016/0020-7683(95)00174-3
- Liu, F.L. (2000), "Static analysis of thick rectangular laminated plates: three-dimensional elasticity solutions via differential quadrature element method", Int. J. Solids Struct., 37(51), 7671-7688. https://doi.org/10.1016/S0020-7683(99)00300-5
- Maithry, K. and Chandra Mohan Rao, B.D. (2015), "Dynamic analysis of laminated composite plates", Int. J. Res. Eng. Technol., 4(13), 116-121.
- Malekzadeh, P. (2009), "Three-dimensional free vibration analysis of thick laminated annular sector plates using a hybrid method", Comput. Struct., 90(4), 428-437. https://doi.org/10.1016/j.compstruct.2009.04.015
- Nath, Y. and Shukla, K.K. (2001), "Non-linear transient analysis of moderately thick laminated composite plates", J. Sound Vib., 247(3), 509-526. https://doi.org/10.1006/jsvi.2001.3752
- Ngo, D., Cong, N., Duy, M., Karunasena, W. and Cong, T.T. (2011), "Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method", Comput. Struct., 89(1-2), 1-2. https://doi.org/10.1016/j.compstruc.2010.07.012
- Noor, A.K. (1973), "Free vibrations of multilayered composite plates", AIAA J., 11(7), 1038-1039. https://doi.org/10.2514/3.6868
- Ohya, F., Ueda, M., Uchiyama, T. and Kikuchi, M. (2006), "Free vibration analysis by the superposition method of rectangular Mindlin plates with internal columns resting on uniform elastic edge supports", J. Sound Vib., 289(1-2), 1-24. https://doi.org/10.1016/j.jsv.2005.01.030
- Rao, Y.S. and Reddy, B.S. (2012), "Harmonic analysis of composite propeller for marine applications", Int. J. Res. Eng. Technol., 1(3), 257-260. https://doi.org/10.15623/ijret.2012.0103010
- Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Senthilnathan, N.R., Lim, K.H., Lee, K.H. and Chow, S.T. (1987), "Buckling of shear deformable plates", AIAA J., 25(9), 1268-71. https://doi.org/10.2514/3.48742
- Sharma, A.K., Mittal, N.D. and Sharma, A. (2014), "Free vibration analysis of moderately thick Antisymmetric angle ply laminated rectangular plates with elastic edge constraints", Mech. Adv. Mater. Struct., 21(5), 341-348. https://doi.org/10.1080/15376494.2012.680678
- Sharma, A.K. and Mittal, N. D. (2013), "Free vibration analysis of laminated composite plates with elastically restrained edges using FEM", Central. Eur. J. Eng., 3(2), 306-315.
- Sharma, A., Sharda, H.B. and Nath, Y. (2005), "Stability and vibration of thick laminated composite sector plates", J. Sound Vib., 287(1-2), 1-23. https://doi.org/10.1016/j.jsv.2004.10.030
- Sharma, A.K. and Mittal, N.D. (2010), "Review on stress and vibration analysis of composite plates", J. Appl. Sci., 10(23), 3156-3166. https://doi.org/10.3923/jas.2010.3156.3166
- Sharma, A.K., Mittal, N.D. and Sharma, A. (2011), "Free vibration analysis of moderately thick antisymmetric cross-ply laminated rectangular plates with elastic edge constraints", Int. J. Mech. Sci., 53(9), 688-695. https://doi.org/10.1016/j.ijmecsci.2011.05.012
- Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two dimensional incompressible Navier-Stokes equations", Int. J. Numer. Meth. Fl., 15(7), 791-798. https://doi.org/10.1002/fld.1650150704
- Shu, C. and Wang, C.M. (1999), "Treatment of mixed and nonuniform boundary conditions in GDQ vibration analysis of rectangular plates", Eng. Struct., 21, 125-134. https://doi.org/10.1016/S0141-0296(97)00155-7
- Useche, J., Albuquerque, E.L. and Sollero, P. (2012), "Harmonic analysis of shear deformable orthotropic cracked plates using the Boundary Element Method", Eng. Anal. Bound. Elem., 36(11), 1528-1535. https://doi.org/10.1016/j.enganabound.2012.05.002
- Wang, X. and Wang, Y. (2004), "Free vibration analyses of thin sector plates by the new version of differential quadrature method", Comput. Method. Appl. M., 193(36-38), 3957-3971. https://doi.org/10.1016/j.cma.2004.02.010
- Wang, X., Gan, L. and Zhang, Y. (2008), "Differential quadrature analysis of the buckling of thin rectangular plates with cosine-distributed compressive loads on two opposite sides", Adv. Eng. Softw., 39(6), 497-504. https://doi.org/10.1016/j.advengsoft.2007.03.011
- Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37(4), 1031-1036. https://doi.org/10.1115/1.3408654
- Zhang, X. and Li, W.L. (2009), "Vibrations of rectangular plates with arbitrary non-uniform elastic edge restraints", J. Sound Vib., 326(1-2), 221-234. https://doi.org/10.1016/j.jsv.2009.04.021
- Zhang, Y.X. and Yang, C.H. (2009), "Recent developments in finite element analysis for laminated composite plates", Comput. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014
- Zhou, D. (2001), "Vibrations of Mindlin rectangular plates with elastically restrained edges using static Timoshenko beam functions with the Rayleigh Ritz method", Int. J. Solids Struct., 38(32-33), 5565-5580. https://doi.org/10.1016/S0020-7683(00)00384-X
Cited by
- Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.643
- Numerical study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model vol.9, pp.3, 2018, https://doi.org/10.12989/acc.2020.9.3.301
- Non-local orthotropic elastic shell model for vibration analysis of protein microtubules vol.25, pp.3, 2018, https://doi.org/10.12989/cac.2020.25.3.245
- Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body vol.21, pp.1, 2018, https://doi.org/10.12989/gae.2020.21.1.001
- Two rectangular elements based on analytical functions vol.5, pp.2, 2018, https://doi.org/10.12989/acd.2020.5.2.147
- Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2018, https://doi.org/10.12989/cac.2020.25.4.311
- A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions vol.36, pp.3, 2020, https://doi.org/10.12989/scs.2020.36.3.355