DOI QR코드

DOI QR Code

A study on the ventilation characteristics and design of transverse ventilation system for road tunnel

도로터널 횡류환기방식의 환기특성 및 시스템 설계 관한 연구

  • Received : 2018.01.11
  • Accepted : 2018.02.27
  • Published : 2018.03.31

Abstract

In this study, the ventilation characteristics and the relationships between the required ventilation flow rate and the ventilation system flow rate was investigated by numerical method for the optimum design of the transverse ventilation and semi-transverse ventilation system in road tunnels. The following results were obtained. In supply exhaust transverse ventilation system, the system supply-exhaust air flow rate is theoretically equal to the difference between the required ventilation flow rate and natural ventilation flow rate. However, it is shown that it increases by about 10% in the analysis results. And, in the case of the longitudinal air flow rate is increased by installed jet fans, ventilation system air flow rate is reduced. However, as the longitudinal air flow rate increases, the concentration of pollutants in the tunnel decreases, so the exhaust effect of pollutants decreases, and the effect of reducing the system air flow rate is decreased. In case of semi-transverse with only air supply, ventilation system air flow rate is equal to required ventilation air flow rate when tunnel inlet velocity is negative, but results is shown it is increased within about 13.3%. Also, it was found that ventilation effect can not be expected even if the jet fans are increased when the tunnel inlet velocity is negative.

본 연구에서는 도로터널의 횡류환기 및 반횡류환기 방식의 설계 방안을 도출할 목적으로 수치해석적인 방법에 의해서 환기특성을 고찰하고 소요환기량과 환기 시스템 용량의 관계를 검토하였으며, 다음과 같은 결과를 얻었다. 급 배기 횡류환기방식에서 환기시스템의 급 배기풍량은 이론적으로 소요환기량과 자연환기량의 차가 되나, 해석결과에 의하면 환기시스템 용량은 소요환기량과 자연환기량의 차보다 약 10%정도 증가하는 것으로 나타나고 있다. 또한 제트팬을 설치하여 종방향 풍속을 증가시키는 경우, 환기시스템의 급배기 풍량은 감소하나, 터널풍속이 증가할 수록 터널 내 농도가 감소하기 때문에 오염물질에 대한 배기효과가 감소하여, 횡류 환기시스템의 용량 감소효과는 감소하는 것으로 나타나고 있다. 급기만 하는 반횡류식에서는 터널입구 풍향이 차량진행방향과 반대인 경우에는 환기시스템의 급기풍량은 소요환기량과 동일하나, 해석결과에서는 약 13.3% 이내의 범위에서 증가하는 것으로 나타나고 있으며, 터널입구 풍속이 음수인 상태에서는 제트팬 댓수를 증가하여 도 환기효과는 기대할 수 없는 것으로 나타났다.

Keywords

References

  1. Almbauer, R.A., Sturm, P.J., Oettl, D., Bacher, M. (2003), "A new method to influence the air flow in transversely ventilated road tunnels in case of fire", Proceedings of the 11th International Symposium Aerodynamics and Ventilation of Vehicle Tunnels BHR Group, Boston, USA, pp. 947-956.
  2. Bickel, J.O., Kuesel, T.R., King, E.H. (1996), Tunnel Engineering Handbook, 2nd, Chapman & Hall, New York, pp. 384-438.
  3. Bumchang Engineering Inc. (2000), Technology of tunnel ventilation, pp. 1-14.
  4. Dobashi, M., Imai, T., Yanagi, H., Mizuno, A. (2000), "Numerical simulation of the emergency tunnel ventilation for a tunnel with longitudinal and transverse systems combined", Proceedings of the 10th International Symposium Aerodynamics and Ventilation of Vehicle Tunnels BHR Group, Luzern, Switzerland, pp. 581-596.
  5. Japan Road Association (2007), Road tunnel technical standards (ventilation) and description, Japan Road Association, Tokyo, pp. 112-119.
  6. MOLIT Statistics System (2017), http://stat.molit.go.kr/portal/search/searchList.do.
  7. Schlaug, R.N., Carlin, T.J. (1979), Aerodynamics and air quality management of highway tunnels, Federal Highway Administration, Washington, D.C., pp. 5-24-5-47.