Acknowledgement
Supported by : Ministry of Science, Research and Technology of Islamic
References
- Apetaur, M. and Opicka, F. (1983), "Linearization of non-linear stochastically excited dynamic systems", J. Sound Vibr., 86(4), 563-585. https://doi.org/10.1016/0022-460X(83)91021-0
- Atalik, T.S. and Utku, S. (1976), "Stochastic linearization of multi-degree-of-freedom non-linear systems", Earthq. Eng. Struct. Dyn., 4(4), 411-420. https://doi.org/10.1002/eqe.4290040408
- Bogdanoff, J.L., Goldberg, J.E. and Bernard, M.C. (1961), "Response of a simple structure to a random earthquake-type disturbance", Bullet. Seismol. Soc. Am., 51(2), 293-310.
- Caughey, T.K. (1956), "Response of van der pol's oscillator to random excitations", Trans. ASME J. Appl. Mech., 26(3), 345-348.
- Chaudhuri, A. and Chakraborty, S. (2004), "Sensitivity evaluation in seismic reliability analysis of structures", Comput. Meth. Appl. Mech. Eng., 193(1-2), 59-68. https://doi.org/10.1016/j.cma.2003.09.007
- Chen, C.F. and Hsiao, C.H. (1975), "Time-domain synthesis via walsh functions", Electr. Eng. Proc. Inst., 122(5), 565-570. https://doi.org/10.1049/piee.1975.0155
- Crandall, S.H. (1962), "Random vibration of a nonlinear system with a set-up spring", J. Appl. Mech., 29(3), 477-482. https://doi.org/10.1115/1.3640591
- Crandall, S.H. (1963), "Perturbation techniques for random vibration of nonlinear systems", J. Acoust. Soc. Am., 35(11), 1700-1705. https://doi.org/10.1121/1.1918792
- Crandall, S.H. (1980), "Non-gaussian closure for random vibration of non-linear oscillators", J. Non-Lin. Mech., 15(4-5), 303-313. https://doi.org/10.1016/0020-7462(80)90015-3
- Datta, K.B. and Mohan, M. (1995), Orthogonal Functions in Systems and Control, World Scientific Publishing Co. Pte. Ltd, Singapore.
- Doughty, T.A., Davies, P. and Bajaj, A.K. (2002), "A Comparison of three techniques using steady data to identify non-linear modal behavior of an externally excited cantilever beam", J. Sound Vibr., 249(4), 785-813. https://doi.org/10.1006/jsvi.2001.3912
- Garre, L. and Der Kiureghian, A. (2010), "Tail-equivalent linearization method in frequency domain and application to marine structures", Mar. Struct., 23(3), 322-338. https://doi.org/10.1016/j.marstruc.2010.07.006
- Hu, Z., Su, C., Chen, T. and Ma, H. (2016), "An explicit timedomain approach for sensitivity analysis of non-stationary random vibration problems", J. Sound Vibr., 382, 122-139. https://doi.org/10.1016/j.jsv.2016.06.034
- Iwan, W.D. and Yang, I.M. (1972), "Application of statistical linearization techniques to nonlinear multidegree-of-freedom systems", J. Appl. Mech., 39(2), 545-550. https://doi.org/10.1115/1.3422714
- Jiang, Z. and Schaufelberger, W. (1992), Block Pulse Functions and Their Applications in Control Systems, Springer Berlin Heidelberg, Berlin, Germany.
- Kovacic, I. and Brennan, M.J. (2011), The Duffing Equation: Nonlinear Oscillators and their Behaviour, John Wiley & Sons, U.K.
- Liu, Q.M. (2012), "Sensitivity and hessian matrix analysis of evolutionary PSD functions for nonstationary random seismic responses", J. Eng. Mech., 138(6), 716-720. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000380
- Lutes, L.D. and Sarkani, S. (2004), Random Vibrations Analysis of Structural and Mechanical Systems, Elsevier Inc., Jordan Hill, Oxford, U.K.
- Ma, C., Zhang, Y., Zhao, Y., Tan, P. and Zhou, F. (2011), "Stochastic seismic response analysis of base-isolated high-rise buildings", Proc. Eng., 14, 2468-2474. https://doi.org/10.1016/j.proeng.2011.07.310
- Orabi, I.I. and Ahmadi, G. (1987), "An iterative method for nonstationary response analysis of non-linear random systems", J. Sound Vibr., 119(1), 145-157. https://doi.org/10.1016/0022-460X(87)90194-5
- Pacheco, R.P. and Steffen Jr, V. (2004), "On the identification of non-linear mechanical systems using orthogonal functions", J. Non-Lin. Mech., 39(7), 1147-1159. https://doi.org/10.1016/S0020-7462(03)00112-4
- Proppe, C., Pradlwarter, H.J. and Schueller, G.I. (2003), "Equivalent linearization and Monte Carlo simulation in stochastic dynamics", Probab. Eng. Mech., 18(1), 1-15. https://doi.org/10.1016/S0266-8920(02)00037-1
- Socha, L. (1998), "Probability density equivalent linearization technique for nonlinear oscillator with stochastic excitations", ZAMM-J. Appl. Math. Mech. Zeitschrift fur Angewandte Mathematik und Mechanik, 78(S3), 1087-1088. https://doi.org/10.1002/zamm.199807815111
- Su, C., Huang, H. and Ma, H. (2016), "Fast equivalent linearization method for nonlinear structures under nonstationary random excitations", J. Eng. Mech., 142(8).
- Su, C. and Xu, R. (2014), "Random vibration analysis of structures by a time-domain explicit formulation method", Struct. Eng. Mech., 52(2), 239-260. https://doi.org/10.12989/sem.2014.52.2.239
- Xu, W.T., Zhang, Y.H., Lin, J.H., Kennedy, D. and Williams, F.W. (2011), "Sensitivity analysis and optimization of vehiclebridge systems based on combined PEM-PIM strategy", Comput. Struct., 89(3-4), 339-345. https://doi.org/10.1016/j.compstruc.2010.11.011
- Younespour, A. and Ghaffarzadeh, H. (2015), "Structural active vibration control using active mass damper by block pulse functions", J. Vibr. Contr., 21(14), 2787-2795. https://doi.org/10.1177/1077546313519285
- Younespour, A. and Ghaffarzadeh, H. (2016), "Semi-active control of seismically excited structures with variable orifice damper using block pulse functions", Smart Struct. Syst., 18(6), 1111-1123. https://doi.org/10.12989/sss.2016.18.6.1111
- Zhang, R. (2000), "Work/energy-based stochastic equivalent linearization with optimized power", J. Sound Vibr., 230(2), 468-475. https://doi.org/10.1006/jsvi.1999.2574
- Zhu, W.Q. (2006), "Nonlinear stochastic dynamics and control in Hamiltonian formulation", Appl. Mech. Rev., 59(4), 230-248. https://doi.org/10.1115/1.2193137