DOI QR코드

DOI QR Code

고정층 흡착 반응기에서 폐감귤박 활성탄의 표면 화학적 특성과 세공구조에 따른 아세톤, 벤젠 및 메틸메르캅탄의 흡착특성

Adsorption Characteristics of Acetone, Benzene and Methyl Mercaptan according to the Surface Chemistry and Pore Structure of Activated Carbons Prepared from Waste Citrus Peel in the Fixed Bed Adsorption Reactor

  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Kang, Kyung-Ho (Livestock Division, Jeju Special Self-Governing Province) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • 투고 : 2017.12.27
  • 심사 : 2018.02.05
  • 발행 : 2018.04.10

초록

활성화제 KOH, NaOH 및 $ZnCl_2$를 사용하여 폐감귤박으로부터 제조한 활성탄인 WCK-AC, WCN-AC, WCZ-AC의 표면 화학적 특성을 검토하고, 대상가스인 아세톤, 벤젠 및 메틸메르캅탄(MM)에 대한 흡착량과 활성탄의 비표면적, 세공부피 및 세공크기와의 상관관계를 살펴보았다. 이들 활성탄에 대한 XPS 분석결과에 의하면 graphite 및 phenolic이 C1의 주요 표면 작용기였으며, 작용기인 phenol, carbonyl 및 carboxyl의 합은 WCK-AC > WCN-AC > WCZ-AC의 순서로 증가하였다. 고정층 흡착반응기에서 3가지 대상가스에 대한 흡착실험으로부터 얻어진 파과곡선은 Yoon과 Nelson에 의해 제안된 경험식에 의해 잘 모사되었다. 작용기의 합이 큰 값을 갖는 활성탄일수록 아세톤, 벤젠 및 MM에 대한 흡착능이 더 컸다. 비표면적 및 세공부피가 크고 세공크기가 작은 활성탄일수록 흡착성능이 우수하였으며, 특히 본 연구에서 사용된 활성탄들의 흡착성능을 가장 잘 나타내는 기준은 비표면적이었다.

The surface chemistry of WCK-AC, WCN-AC and WCZ-AC which are activated carbons prepared from waste citrus peel using KOH, NaOH, and $ZnCl_2$ as activating chemicals were investigated. Also the relationships between the adsorption capacities of the target gases such as acetone, benzene and methyl mercaptan (MM) by the prepared activated carbons and the pore characteristics of each activated carbon were examined. According to XPS analysis of the prepared activated carbons, graphite and phenolic were the main surface functional groups of C1, and the sum of phenol, carbonyl and carboxyl groups increased in the order of WCK-AC > WCN-AC > WCZ-AC. The breakthrough curves obtained from the adsorption experiments for the three target gases in the fixed bed adsorption reactor were well simulated by the empirical equations proposed by Yoon and Nelson. The adsorption capacity for acetone, benzene and MM was larger for activated carbons with the larger sum of surface functional groups. The larger the specific surface area and the pore volume of activated carbons and the smaller the pore size, the better the adsorption performance. In particular, the specific surface area was the best criterion for the adsorption performance of activated carbons used in this study.

키워드

참고문헌

  1. M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, and H. R. Kermani, Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone, J. Hazard. Mater., 150, 322-327 (2008). https://doi.org/10.1016/j.jhazmat.2007.04.118
  2. M. M. Mohamed, Acid dye removal: Comparison of surfactant modified mesoporous FSM-16 with activated carbon derived from rice husk, J. Colloid Int. Sci., 272, 28-34 (2004). https://doi.org/10.1016/j.jcis.2003.08.071
  3. M. A. Ahmad, W. M. A. Wan Daud, and M. K. Aroua, Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell, Colloids Surf. A, 312, 131-135 (2008). https://doi.org/10.1016/j.colsurfa.2007.06.040
  4. M. Valix, W. H. Cheung, and G. McKay, Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption, Chemosphere, 56, 493-501 (2004). https://doi.org/10.1016/j.chemosphere.2004.04.004
  5. R. L. Tseng, S. K. Tseng, and F. C. Wu, Preparation of high surface area carbons from corncob using KOH combined with $CO_2$ gasification for the adsorption of dyes and phenols from water, Colloids Surf. A, 279, 69-78 (2006). https://doi.org/10.1016/j.colsurfa.2005.12.042
  6. A. Ahmad and B. Hameed, Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon, J. Hazard. Mater., 172, 1538-1543 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.025
  7. A. Khaled, A. E. Nemr, A. El-Sikaily, and O. Abdelwahab, Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: Adsorption isotherm and kinetic studies, J. Hazard. Mater., 165, 100-110 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.122
  8. N. Kannan and M. M. Sundaram, 2001, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - A comparative study, Dyes Pigm., 51, 25-40 (2001). https://doi.org/10.1016/S0143-7208(01)00056-0
  9. K. H. Kang, S. K. Kam, and M. G. Lee, Preparation of activated carbon from waste citrus peels by $ZnCl_2$, J. Environ. Sci. Int., 16, 1091-1098 (2007). https://doi.org/10.5322/JES.2007.16.9.1091
  10. K. H. Kang, S. K. Kam, and M. G. Lee, Adsorption characteristics of activated carbon prepared from waste citrus peels by NaOH activation, J. Environ. Sci. Int., 16, 1279-1285 (2007). https://doi.org/10.5322/JES.2007.16.11.1279
  11. S. K. Kam, K. H. Kang, and M. G. Lee, Characterisitics of activated carbon prepared from waste citrus peel by KOH activation, Appl. Chem. Eng., 28(6), 649-654 (2017). https://doi.org/10.14478/ACE.2017.1073
  12. T. Cheng, Y. Jiang, Y. Zhang, and S. Liu, Prediction of breakthrough curves for adsorption on activated carbon fibers in a fixed bed, Carbon, 42, 3081-3085 (2004). https://doi.org/10.1016/j.carbon.2004.07.021
  13. Z. Huang, F. Kang, K. Liang, and J. Hao, Breakthrough of methylketone and benzene vapors in activated carbon fiber beds, J. Hazard. Mater., B98, 107-115 (2003).
  14. Y. C. Chiang, P. C. Chiang, and C. P. Huang, Effect of pore structure and temperature on VOC adsorption on activated carbon, Carbon, 39, 523-534 (2001). https://doi.org/10.1016/S0008-6223(00)00161-5
  15. R. Harikrishnan, M. P. Srinivasan, and C. B. Ching, Adsorption of ethyl benzene on activated carbon from supercritical $CO_2$, AIChE J., 44, 2620-2627 (1998). https://doi.org/10.1002/aic.690441205
  16. L. Li, S. Liu, and J. Liu, Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal, J. Hazard. Mater., 192, 683-690 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.069
  17. J. K. Lim, S. W. Lee, S. K. Kam, D. W. Lee, and M. G. Lee, Adsorption characteristics of toluene vapor in fixed-bed activated carbon column, J. Environ. Sci. Int., 14, 61-69 (2005). https://doi.org/10.5322/JES.2005.14.1.061
  18. S. W. Lee, S. K. Bae, J. H. Kwon, Y. S. Na, C. D. An, Y. S. Yoon, and S. K. Song, Correlations between pore structure of activated carbon and adsorption characteristics of acetone vapor, J. Korean Soc. Environ. Eng., 27, 620-625 (2005).
  19. M. G. Lee, S. W. Lee, and S. H. Lee, Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixed-bed reactor, Korean J. Chem. Eng., 23, 773-778 (2006). https://doi.org/10.1007/BF02705926
  20. M. A. Ahmad, W. M. A. Wan Daud, and M. K. Aroua, Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell, Colloids Surf. A, 312, 131-135 (2008). https://doi.org/10.1016/j.colsurfa.2007.06.040
  21. M. K. Hafshejani, A. Langari, and M. Khazaei, Adsorption of acetone from polluted air by activated carbon derived from low cost materials, Life Sci. J., 10, 3658-3661 (2013).
  22. J.-H. Tsai, H.-M. Chiang, G.-Y. Huang, and H.-L. Chiang, Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers, J. Hazard. Mater., 154, 1183-1191 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.065
  23. R. R. Bansode, J. N. Losso, W. E. Marshall, R. M. Rao, and R. J. Portier, Adsorption of volatile organic compounds by pecan shell and almond shell-based granular activated carbons, Bioresour. Technol., 90, 175-184 (2003). https://doi.org/10.1016/S0960-8524(03)00117-2
  24. S. K. Kam, K. H. Kang, and M. G. Lee, Adsorption characteristics of acetone, benzene, and metyl mercaptan by activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 28(6), 663-669 (2017). https://doi.org/10.14478/ACE.2017.1074
  25. S. K. Kam, K. H. Kang, and M. G. Lee, Adsorption characteristics of acetone, benzene, and metyl mercaptan in the fixed bed reactor packed with activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 29(1), 28-36 (2018). https://doi.org/10.14478/ACE.2017.1094
  26. Z. H. Huang, F. Kang, Y. P. Zheng, J. B. Yang, and K. M. Liang, Adsorption of trace polar methyl-ethyl-ketone and non-polar benzene vapors on viscose rayon-based activated carbon fibers, Carbon, 40, 1363-1367 (2002). https://doi.org/10.1016/S0008-6223(01)00292-5
  27. J. M. Thomas, E. L. Evans, M. Barber, and P. Swift, Determination of the occupancy of valence bands in graphite, diamond and less-ordered carbons by X-ray photo-electron spectroscopy, Trans. Faraday Soc., 67, 1875-1886 (1971). https://doi.org/10.1039/tf9716701875
  28. C. Moreno-Castilla, M. V. Lopez-Ramon, and F. Carrasco-Marin, Changes in surface chemistry of activated carbons by wet oxidation, Carbon, 38, 1995-2001 (2000). https://doi.org/10.1016/S0008-6223(00)00048-8
  29. J. H. Yoon and G. O. Nelson, Application of gas adsorption kinetics: I. A theoretical model for respirator cartridge service life, AIHA J., 45, 509-516 (1984). https://doi.org/10.1080/15298668491400197
  30. D. M. Ruthven, Principles of Adsorption and Adsorption Processes, p. 433, Wiley, NY, USA (1984).