DOI QR코드

DOI QR Code

Application of Stimuli-responsive Chitosan Micelles for Improved Therapeutic Efficiency of Anticancer Agents

항암제의 치료 효율성을 높이기 위한 다양한 자극 응답성 물질이 개질된 키토산 마이셀의 응용성 고찰

  • Jeong, Gyeong-Won (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Park, Jun-Kyu (CGbio Co.Ltd) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
  • 정경원 (순천대학교 공과대학 고분자공학과) ;
  • 박준규 ((주)시지바이오) ;
  • 나재운 (순천대학교 공과대학 고분자공학과)
  • Received : 2018.02.20
  • Accepted : 2018.03.01
  • Published : 2018.04.10

Abstract

Currently, to overcome low therapeutic efficiencies and side effects of anticancer agents, the study of drug carrier based on polymers have been consistently investigated. Although the traditional drug carrier based on polymers displayed an excellent result and significant progress, there has been a problem with the side effect and low therapeutic efficiency because of the premature drug release before reached to the targeted region by the low stability in blood stream and sustained drug release. In this review article, to improve the problem of inefficient drug release, methods were suggested, which can maximize the therapeutic efficiency by increasing the stability in the blood stream and triggering drug release at the target site by introducing a stimuli-responsive substance to the non-toxic and biocompatible natural polymer chitosan.

현재 항암제의 낮은 치료 효율과 부작용을 해결하기 위해 고분자 기반의 약물전달체의 연구가 활발하게 진행되고 있다. 기존의 고분자기반의 약물 전달체는 우수한 결과를 보이는 등 상당한 진전이 있었음에도 불구하고, 대부분 혈중에서 안정성이 감소하여 표적 부위에 도달하기 전에 약물이 방출될 뿐만 아니라 오랜 시간 동안에 약물을 방출함으로써 부작용 및 낮은 치료 효율을 초래한다는 문제점을 가지고 있다. 본 총론에서는 이러한 비효율적인 약물 방출의 문제점을 개선하기 위한 방법으로 독성이 없고 생체 적합한 천연 고분자 키토산에 자극 응답성 물질을 도입하여 혈중에서 안정성을 높이고 표적 부위에서 약물을 과다 방출하여 치료 효율을 극대화할 수 있는 방법을 제시하고자 한다.

Keywords

References

  1. W. Cao, Y. Gu, M. Meineck, and H. Xu, The combination of chemotherapy and radiotherapy towards more efficient drug delivery, Chem. Asian J., 9, 48-57 (2014). https://doi.org/10.1002/asia.201301294
  2. Y. Xin, Q. Huang, J. Q. Tang, X. Y. Hou, P. Zhang, L. Z. Zhang, and G. Jiang, Nanoscale drug delivery for targeted chemotherapy, Cancer Lett., 379, 24-31 (2016). https://doi.org/10.1016/j.canlet.2016.05.023
  3. O. Adeoye and H. Cabral-Marques, Cyclodextrin nanosystems in oral drug delivery: A mini review, Int. J. Pharm., 531, 521-531 (2017). https://doi.org/10.1016/j.ijpharm.2017.04.050
  4. P. S. Glass and J. G. Reves, Drug delivery system to improve the perioperative administration of intravenous drugs: computer assisted continuous infusion (CACI), Anesth. Analg., 81, 665-667 (1995).
  5. P. K. Paul, A. Treetong, and R. Suedee, Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system, Acta Pharm., 67, 149-168 (2017).
  6. S. H. Yalkowsky, J. F. Krzyzaniak, and G. H. Ward, Formulation-related problems associated with intravenous drug delivery, J. Pharm. Sci., 87, 787-796 (1998). https://doi.org/10.1021/js980051i
  7. Q. Wang, P. Liu, Y. Sun, H. Wu, X. Li, Y. Duan, and Z. Zhang, Pluronic-poly[alpha-(4-aminobutyl)-1-glycolic acid] polymeric micelle-like nanoparticles as carrier for drug delivery, J. Nanosci. Nanotechnol., 14, 4843-4850 (2014). https://doi.org/10.1166/jnn.2014.8666
  8. F. Ye, H. Guo, H. Zhang, and X. He, Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system, Acta Biomater., 6, 2212-2218 (2010). https://doi.org/10.1016/j.actbio.2009.12.014
  9. T. C. Lin, K. H. Hung, C. H. Peng, J. H. Liu, L. C. Woung, C. Y. Tsai, S. J. Chen, Y. T. Chen, and C. C. Hsu, Nanotechnology-based drug delivery treatments and specific targeting therapy for age-related macular degeneration, J. Chin. Med. Assoc., 78, 635-641 (2015). https://doi.org/10.1016/j.jcma.2015.07.008
  10. C. Peptu, R. Rotaru, L. Ignat, A. C. Humelnicu, V. Harabagiu, C. A. Peptu, M. M. Leon, F. Mitu, E. Cojocaru, A. Boca, and B. I. Tamba, Nanotechnology approaches for pain therapy through transdermal drug delivery, Curr. Pharm. Des., 21, 6125-6139 (2015). https://doi.org/10.2174/1381612821666151027152752
  11. J. Zhong, Nanotechnology for drug delivery: Part II, Curr. Pharm. Des., 21, 4129-4130 (2015). https://doi.org/10.2174/1381612821999150904104838
  12. M. Basha, Nanotechnology as a promising strategy for anticancer drug delivery, Curr Drug Deliv., 14, 1-13 (2017).
  13. M. L. Cuestas, Therapy of chronic hepatitis C in the era of nanotechnology: Drug delivery systems and liver targeting, Mini Rev. Med. Chem., 17, 295-304 (2017). https://doi.org/10.2174/1389557516666161019152716
  14. B. N. Ho, C. M. Pfeffer, and A. T. K. Singh, Update on nanotechnology-based drug delivery systems in cancer treatment, Anticancer Res., 37, 5975-5981 (2017).
  15. Z. He, X. Wan, A. Schulz, H. Bludau, M. A. Dobrovolskaia, S. T. Stern, S. A. Montgomery, H. Yuan, Z. Li, D. Alakhova, M. Sokolsky, D. B. Darr, C. M. Perou, R. Jordan, R. Luxenhofer, and A. V. Kabanov, A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity, Biomaterials, 101, 296-309 (2016). https://doi.org/10.1016/j.biomaterials.2016.06.002
  16. Y. Zhang, L. Chen, J. Ding, K. Shen, M. Yang, C. Xiao, X. Zhuang, and X. Chen, Self-programmed pH-sensitive polymeric prodrug micelle for synergistic cancer therapy, J. Control. Release, 213, e135-136 (2015).
  17. W. Zhuang, B. Ma, G. Liu, X. Chen, and Y. Wang, A fully absorbable biomimetic polymeric micelle loaded with cisplatin as drug carrier for cancer therapy, Regen. Biomater., 5, 1-8 (2018). https://doi.org/10.1093/rb/rbx012
  18. D. Kim, E. S. Lee, K. T. Oh, Z. G. Gao, and Y. H. Bae, Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH, Small, 4, 2043-2050 (2008). https://doi.org/10.1002/smll.200701275
  19. H. Park, W. Park, and K. Na, Doxorubicin loaded singlet-oxygen producible polymeric micelle based on chlorine e6 conjugated pluronic F127 for overcoming drug resistance in cancer, Biomaterials, 35, 7963-7969 (2014). https://doi.org/10.1016/j.biomaterials.2014.05.063
  20. M. W. Saif, N. A. Podoltsev, M. S. Rubin, J. A. Figueroa, M. Y. Lee, J. Kwon, E. Rowen, J. Yu, and R. O. Kerr, Phase II clinical trial of paclitaxel loaded polymeric micelle in patients with advanced pancreatic cancer, Cancer Invest., 28, 186-194 (2010).
  21. F. Barahuie, D. Dorniani, B. Saifullah, S. Gothai, M. Z. Hussein, A. K. Pandurangan, P. Arulselvan, and M. E. Norhaizan, Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system, Int. J. Nanomed., 12, 2361-2372 (2017). https://doi.org/10.2147/IJN.S126245
  22. P. R. Kamath and D. Sunil, Nano-chitosan particles in anticancer drug delivery: An up-to-date review, Mini Rev. Med. Chem., 17, 1457-1487 (2017).
  23. J. Y. Lee, U. Termsarasab, M. Y. Lee, D. H. Kim, S. Y. Lee, J. S. Kim, H. J. Cho, and D. D. Kim, Chemosensitizing indomethacin-conjugated chitosan oligosaccharide nanoparticles for tumor-targeted drug delivery, Acta Biomater., 57, 262-273 (2017). https://doi.org/10.1016/j.actbio.2017.05.012
  24. A. Ali and S. Ahmed, A review on chitosan and its nanocomposites in drug delivery, Int. J. Biol. Macromol., 109, 273-286 (2018). https://doi.org/10.1016/j.ijbiomac.2017.12.078
  25. K. Dua, M. Bebawy, R. Awasthi, R.K. Tekade, M. Tekade, G. Gupta, T. De Jesus Andreoli Pinto, P.M. Hansbro, Chitosan and its derivatives in nanocarrier based pulmonary drug delivery systems, Pharm Nanotechnol., 5(4), 243-249 (2017).
  26. K. Bowman and K. W. Leong, Chitosan nanoparticles for oral drug and gene delivery, Int. J. Nanomedicine, 1, 117-128 (2006). https://doi.org/10.2147/nano.2006.1.2.117
  27. G. Huang, Y. Liu, and L. Chen, Chitosan and its derivatives as vehicles for drug delivery, Drug deliv., 24, 108-113 (2017). https://doi.org/10.1080/10717544.2017.1399305
  28. S. Jana, N. Maji, A. K. Nayak, K. K. Sen, and S. K. Basu, Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery, Carbohydr. Polym., 98, 870-876 (2013). https://doi.org/10.1016/j.carbpol.2013.06.064
  29. H. Lu, Y. Dai, L. Lv, and H. Zhao, Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis, PloS One, 9, e84703 (2014). https://doi.org/10.1371/journal.pone.0084703
  30. X. Bai, Z. Bao, S. Bi, Y. Li, X. Yu, S. Hu, M. Tian, X. Zhang, X. Cheng, X. Chen, Chitosan-based thermo/pH double sensitive hydrogel for controlled drug delivery, Macromol. Biosci., 18, 1700305 (2018). https://doi.org/10.1002/mabi.201700305
  31. W. C. Lin, D. G. Yu, and M. C. Yang, pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties, Colloids Surf. B, 44, 143-151 (2005). https://doi.org/10.1016/j.colsurfb.2005.06.010
  32. M. Wang, H. Hu, Y. Sun, L. Qiu, J. Zhang, G. Guan, X. Zhao, M. Qiao, L. Cheng, L. Cheng, and D. Chen, A pH-sensitive gene delivery system based on folic acid-PEG-chitosan - PAMAM-plasmid DNA complexes for cancer cell targeting, Biomaterials, 34, 10120-10132 (2013). https://doi.org/10.1016/j.biomaterials.2013.09.006
  33. X. Cui, X. Guan, S. Zhong, J. Chen, H. Zhu, Z. Li, F. Xu, P. Chen, and H. Wang, Multi-stimuli responsive smart chitosan-based microcapsules for targeted drug delivery and triggered drug release, Ultrason. Sonochem., 38, 145-153 (2017). https://doi.org/10.1016/j.ultsonch.2017.03.011
  34. Y. Lee, D.H. Thompson, Stimuli-responsive liposomes for drug delivery, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 9, e1450 (2017). https://doi.org/10.1002/wnan.1450
  35. Y. Sheng, J. Hu, J. Shi, L.J. Lee, Stimuli-responsive carriers for controlled intracellular drug release, Curr. Med. Chem., 24, 1-11 (2017).
  36. S. Mura, J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater., 12, 991-1003 (2013). https://doi.org/10.1038/nmat3776
  37. W. Xiao, X. Zeng, H. Lin, K. Han, H. Z. Jia, and X. Z. Zhang, Dual stimuli-responsive multi-drug delivery system for the individually controlled release of anti-cancer drugs, Chem. Commun. (Camb), 51, 1475-1478 (2015). https://doi.org/10.1039/C4CC08831J
  38. W. Cheng, L. Gu, W. Ren, and Y. Liu, Stimuli-responsive polymers for anti-cancer drug delivery, C, Mater. Sci. Eng. C, 45, 600-608 (2014). https://doi.org/10.1016/j.msec.2014.05.050
  39. G. Qing, M. Li, L. Deng, Z. Lv, P. Ding, and T. Sun, Smart drug release systems based on stimuli-responsive polymers, Mini Rev. Med. Chem., 13, 1369-1380 (2013). https://doi.org/10.2174/13895575113139990062
  40. Q. Tang, B. Yu, L. Gao, H. Cong, N. Song, C. Lu, Stimuli responsive nanoparticles for controlled anti-cancer drug release, Curr. Med. Chem., 25, 1-30 (2018). https://doi.org/10.2174/092986732501180122140757
  41. B. Surnar and M. Jayakannan, Stimuli-responsive poly(caprolactone) vesicles for dual drug delivery under the gastrointestinal tract, Biomacromolecules, 14, 4377-4387 (2013). https://doi.org/10.1021/bm401323x
  42. X. Wu, Y. J. Tan, H. T. Toh, L. H. Nguyen, S. H. Kho, S. Y. Chew, H. S. Yoon, and X. W. Liu, Stimuli-responsive multifunctional glyconanoparticle platforms for targeted drug delivery and cancer cell imaging, Chem. Sci., 8, 3980-3988 (2017). https://doi.org/10.1039/C6SC05251G
  43. M. Zhou, K. Wen, Y. Bi, H. Lu, J. Chen, Y. Hu, and Z. Chai, The Application of Stimuli-responsive Nanocarriers for Targeted Drug Delivery, Curr. Top. Med. Chem., 17, 2319-2334 (2017).
  44. Z. Amoozgar, J. Park, Q. Lin, and Y. Yeo, Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery, Mol. Pharm., 9, 1262-1270 (2012). https://doi.org/10.1021/mp2005615
  45. T. Woraphatphadung, W. Sajomsang, T. Rojanarata, T. Ngawhirunpat, P. Tonglairoum, P. Opanasopit, Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery, AAPS PharmSciTech., 19, 1-10 (2017).
  46. Y. Lv, H. Huang, B. Yang, H. Liu, Y. Li, and J. Wang, A robust pH-sensitive drug carrier: aqueous micelles mineralized by calcium phosphate based on chitosan, Carbohydr. Polym., 111, 101-107 (2014). https://doi.org/10.1016/j.carbpol.2014.04.082
  47. S. Cerritelli, D. Velluto, and J. A. Hubbell, PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery, Biomacromolecules, 8, 1966-1972 (2007). https://doi.org/10.1021/bm070085x
  48. J. X. Chen, M. Wang, H. H. Tian, and J. H. Chen, Hyaluronic acid and polyethylenimine self-assembled polyion complexes as pH-sensitive drug carrier for cancer therapy, Colloids Surf. B, 134, 81-87 (2015). https://doi.org/10.1016/j.colsurfb.2015.06.039
  49. W. Lin, X. Guan, T. Sun, Y. Huang, X. Jing, and Z. Xie, Reduction-sensitive amphiphilic copolymers made via multi-component Passerini reaction for drug delivery, Colloids Surf. B, 126, 217-223 (2015). https://doi.org/10.1016/j.colsurfb.2014.12.030
  50. J. Li, M. Huo, J. Wang, J. Zhou, J. M. Mohammad, Y. Zhang, Q. Zhu, A. Y. Waddad, and Q. Zhang, Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel, Biomaterials, 33, 2310-2320 (2012). https://doi.org/10.1016/j.biomaterials.2011.11.022
  51. J. Bae, A. Maurya, Z. Shariat-Madar, S. N. Murthy, and S. Jo, Novel Redox-responsive amphiphilic copolymer micelles for drug delivery: Synthesis and characterization, AAPS J., 17, 1357-1368 (2015). https://doi.org/10.1208/s12248-015-9800-2
  52. C. Sun, X. Li, X. Du, and T. Wang, Redox-responsive micelles for triggered drug delivery and effective laryngopharyngeal cancer therapy, Int. J. Biol. Macromol., 112, 65-73 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.136
  53. C. Zhao, L. Shao, J. Lu, C. Zhao, Y. Wei, J. Liu, M. Li, Y. Wu, Triple redox responsive poly(ethylene glycol)-polycaprolactone polymeric nanocarriers for fine-controlled drug release, Macromol. Biosci., 17, 1600295 (2017). https://doi.org/10.1002/mabi.201600295
  54. J. T. Lin, Z. K. Liu, Q. L. Zhu, X. H. Rong, C. L. Liang, J. Wang, D. Ma, J. Sun, and G. H. Wang, Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles, Colloids Surf. B, 155, 41-50 (2017). https://doi.org/10.1016/j.colsurfb.2017.04.002
  55. Y. Su, Y. Hu, Y. Du, X. Huang, J. He, J. You, H. Yuan, and F. Hu, Redox-responsive polymer-drug conjugates based on doxorubicin and chitosan oligosaccharide-g-stearic acid for cancer therapy, Mol. Pharm., 12, 1193-1202 (2015). https://doi.org/10.1021/mp500710x
  56. M. Vila-Caballer, G. Codolo, F. Munari, A. Malfanti, M. Fassan, M. Rugge, A. Balasso, M. de Bernard, and S. Salmaso, A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: An application for bladder cancer treatment, J. Control. Release, 238, 31-42 (2016). https://doi.org/10.1016/j.jconrel.2016.07.024
  57. C. L. Peng, L. Y. Yang, T. Y. Luo, P. S. Lai, S. J. Yang, W. J. Lin, and M. J. Shieh, Development of pH sensitive 2-(diisopropylamino) ethyl methacrylate based nanoparticles for photodynamic therapy, Nanotechnology, 21, 155103 (2010). https://doi.org/10.1088/0957-4484/21/15/155103
  58. I. S. Kim and I. J. Oh, Drug release from the enzyme-degradable and pH-sensitive hydrogel composed of glycidyl methacrylate dextran and poly(acrylic acid), Arch. Pharm. Res., 28, 983-987 (2005). https://doi.org/10.1007/BF02973887
  59. T. S. Angeles, P. A. Smanik, C. L. Borders, Jr., and R. E. Viola, Aspartokinase-homoserine dehydrogenase I from Escherichia coli: pH and chemical modification studies of the kinase activity, Biochemistry, 28, 8771-8777 (1989). https://doi.org/10.1021/bi00448a014
  60. J. Lu, Y. Li, D. Hu, X. Chen, Y. Liu, L. Wang, and Y. Zhao, Synthesis and properties of pH-, thermo-, and salt-sensitive modified poly(aspartic acid)/poly(vinyl alcohol) IPN hydrogel and its drug controlled release, Biomed. Res. Int., 2015, 236745 (2015).
  61. J. Zheng, X. Tian, Y. Sun, D. Lu, and W. Yang, pH-sensitive poly(glutamic acid) grafted mesoporous silica nanoparticles for drug delivery, Int. J. Pharm., 450, 296-303 (2013). https://doi.org/10.1016/j.ijpharm.2013.04.014
  62. H. Guo and J. C. Kim, Reduction-Sensitive Poly(ethylenimine) Nanogel Bearing Dithiodipropionic Acid, Chem. Pharm. Bull., 65, 718-725 (2017). https://doi.org/10.1248/cpb.c17-00029
  63. L. Liu, S. Li, L. Liu, D. Deng, and N. Xia, Simple, sensitive and selective detection of dopamine using dithiobis(succinimidylpropionate)-modified gold nanoparticles as colorimetric probes, Analyst, 137, 3794-3799 (2012). https://doi.org/10.1039/c2an35734h
  64. K. S. Blevins, J. H. Jeong, M. Ou, J. H. Brumbach, and S. W. Kim, EphA2 targeting peptide tethered bioreducible poly(cystamine bisacrylamide-diamino hexane) for the delivery of therapeutic pCMV-RAE-1gamma to pancreatic islets, J. Control. Release, 158, 115-122 (2012). https://doi.org/10.1016/j.jconrel.2011.10.022
  65. S. Tan, G. Wang, redox-responsive and ph-sensitive nanoparticles enhanced stability and anticancer ability of erlotinib to treat lung cancer in vivo, Drug Des. Devel. Ther., 11, 3519-3529 (2017). https://doi.org/10.2147/DDDT.S151422
  66. S. Ganta, H. Devalapally, A. Shahiwala, and M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery, J. Control. Release, 126, 187-204 (2008). https://doi.org/10.1016/j.jconrel.2007.12.017
  67. F. Puoci, F. Iemma, and N. Picci, Stimuli-responsive molecularly imprinted polymers for drug delivery: a review, Curr. Drug Deliv., 5, 85-96 (2008). https://doi.org/10.2174/156720108783954888
  68. D. Chen and J. Sun, In vitro and in vivo evaluation of PEG-conjugated ketal-based chitosan micelles as pH-sensitive carriers, Polym. Chem., 6, 998-1004 (2015). https://doi.org/10.1039/C4PY01639D
  69. A. Babu, R. Ramesh, Multifaceted Applications of Chitosan in Cancer Drug Delivery and Therapy, Mar. Drugs., 15(4), 96 (2017). https://doi.org/10.3390/md15040096
  70. C. Wu, J. Yang, X. Xu, C. Gao, S. Lu, and M. Liu, Redox-responsive core-cross linked mPEGylated starch micelles as nanocarriers for intracellular anticancer drug release, Eur. Polym. J., 83, 230-243 (2016). https://doi.org/10.1016/j.eurpolymj.2016.08.018
  71. Y. W. Hu, Y. Z. Du, N. Liu, X. Liu, T. T. Meng, B. L. Cheng, J. B. He, J. You, H. Yuan, and F. Q. Hu, Selective redox-responsive drug release in tumor cells mediated by chitosan based glycolipid-like nanocarrier, J. Control. Release, 206, 91-100 (2015). https://doi.org/10.1016/j.jconrel.2015.03.018

Cited by

  1. Smart stimuli-responsive biopolymeric nanomedicines for targeted therapy of solid tumors vol.15, pp.22, 2018, https://doi.org/10.2217/nnm-2020-0146