DOI QR코드

DOI QR Code

업컨버전 나노입자를 이용한 광역학치료 연구 동향

Recent Trends in Photodynamic Therapy Using Upconversion Nanoparticles

  • 임세진 (전남대학교 화학공학부) ;
  • 이송렬 (전남대학교 화학공학부) ;
  • 박용일 (전남대학교 화학공학부)
  • Im, Se Jin (School of Chemical Engineering, Chonnam National University) ;
  • Lee, Song Yeul (School of Chemical Engineering, Chonnam National University) ;
  • Park, Yong Il (School of Chemical Engineering, Chonnam National University)
  • 투고 : 2018.02.28
  • 심사 : 2018.03.13
  • 발행 : 2018.04.10

초록

광역학치료는 질병을 치료함에 있어 전이가능성과 부작용이 매우 적고 국부적인 종양의 제거가 가능하다는 장점을 갖는 치료방법이다. 광역학치료에서는 빛 에너지를 흡수하여 세포 독성을 띠는 활성산소를 생성하는 감광제가 필수적이다. 하지만 일반적인 감광제는 가시광선을 광원으로 사용하므로 이에 따른 부작용 및 치료효과의 한계가 존재한다. 이러한 이유로 가시광선 대신 근적외선을 광원으로 사용할 수 있는 업컨버전 나노입자가 질병진단 및 치료 분야에서 주목을 받고 있다. 업컨버전 나노입자는 세포 독성 및 광원에 의한 부작용이 적고, 광원의 조직 내 높은 투과율 및 낮은 자가형광 등의 장점을 가지고 있다. 근적외선 업컨버전을 광역학치료에 활용하기 위해서는 근적외선을 흡수하는 업컨버전 나노입자를 활성산소를 생성시키는 감광제와 결합시켜야 한다. 나노입자에 결합된 감광제는 나노입자로부터 빛 에너지를 흡수하고 이를 주위의 산소에 전이시켜 활성산소를 생성한다. 뿐만 아니라 질병의 치료 효율은 업컨버전 나노입자의 표면을 개질하거나 항암 약물의 첨가, 또는 광열치료와의 결합을 통해 더욱 향상시킬 수 있다. 본 총설은 업컨버전 나노입자를 이용한 광역학치료와 이를 이용한 질병 치료 효과 향상에 대한 최근의 연구결과를 바탕으로 서술하였다.

Photodynamic therapy (PDT) is a great potential approach for the localized tumor removal with fewer metastatic potentials and side effects in treating the disease. In the treatment process, a photosensitizer (PS) that absorbs a light energy to generate reactive oxygen is essential. In general, a visible light is used as a light source of PDT, so that side effects from the light source are inevitable. For this reason, upconversion nanoparticles (UCNPs) using near-infrared (NIR) as an excitation source are attracting attention in the field of disease diagnosis and treatment. UCNPs have the low cytotoxicity and phototoxicity, and also advantages such as deep tissue penetration and low background autofluorescence. For PDT, UCNPs should be combined with a PS which absorbs the light energy from UCNPs and transfers it to the surrounding oxygen to produce reactive oxygen. In addition, the therapeutic efficacy can be improved by modifying nanoparticle surfaces, adding anti-cancer drugs, or combining with photothermal therapy (PTT). In this review, we summarize the recent research to improve the efficiency of PDT using UCNPs.

키워드

참고문헌

  1. R. Siegel, D. Naishadham, and A. Jemal, Cancer statistics, 2013, CA Cancer J. Clin., 63, 11-30 (2013). https://doi.org/10.3322/caac.21166
  2. G. Makin, Principles of chemotherapy, Paediatr. Child Health, 24, 161-165 (2014). https://doi.org/10.1016/j.paed.2013.09.002
  3. P. Zhang, C. Hu, W. Ran, J. Meng, Q. Yin, and Y. Li, Recent progress in light-triggered nanotheranostics for cancer treatment, Theranostics, 6, 948-968 (2016). https://doi.org/10.7150/thno.15217
  4. T. J. Dougherty, G. B. Grindey, R. Fiel, K. R. Weishaupt, and D. G. Boyle, Photoradiation therapy. II. cure of animal tumors with hematoporphyrin and light, J. Natl. Cancer Inst., 55, 115-121 (1975). https://doi.org/10.1093/jnci/55.1.115
  5. N. L. Oleinick, R. L. Morris, and I. Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how, Photochem. Photobiol. Sci., 1, 1-21 (2002). https://doi.org/10.1039/b108586g
  6. W. M. Sharman, C. M. Allen, and J. E. van Lier, Role of activated oxygen species in photodynamic therapy, Meth. Enzymol., 319, 376-400 (2000).
  7. A. P. Castano, T. N. Demidova, and M. R. Hamblin, Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization, Photodiagnosis Photodyn. Ther., 1, 279-293 (2004). https://doi.org/10.1016/S1572-1000(05)00007-4
  8. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, Photodynamic therapy of cancer: an update, CA Cancer. J. Clin., 61, 250-281 (2011). https://doi.org/10.3322/caac.20114
  9. H. Zhang, Y. Shan, and L. Dong, A comparison of $TiO_2$ and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer, J. Biomed. Nanotechnol., 10, 1450-1457 (2014). https://doi.org/10.1166/jbn.2014.1961
  10. E. J. Hong, D. G. Choi, and M. S. Shim, Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials, Acta Pharm. Sin. B, 6, 297-307 (2016). https://doi.org/10.1016/j.apsb.2016.01.007
  11. Q. Liu, W. Feng, T. Yang, T. Yi, and F. Li, Upconversion luminescence imaging of cells and small animals, Nat. Protoc., 8, 2033-2044 (2013). https://doi.org/10.1038/nprot.2013.114
  12. S. S. Lucky, K. C. Soo, and Y. Zhang, Nanoparticles in photodynamic therapy, Chem. Rev., 115, 1990-2042 (2015). https://doi.org/10.1021/cr5004198
  13. M. R. Saboktakin and R. M. Tabatabaee, The novel polymeric systems for photodynamic therapy technique, Int. J. Biol. Macromol., 65, 398-414 (2014). https://doi.org/10.1016/j.ijbiomac.2014.01.019
  14. N. Teraphongphom, C. S. Kong, J. M. Warram, and E. L. Rosenthal, Specimen mapping in head and neck cancer using fluorescence imaging, Laryngoscope Investig. Otolaryngol., 2, 447-452 (2017). https://doi.org/10.1002/lio2.84
  15. F. Chen, H. Hong, Y. Zhang, H. F. Valdovinos, S. Shi, G. S. Kwon, C. P. Theuer, T. E. Barnhart, and W. Cai, In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles, ACS Nano, 7, 9027-9039 (2013). https://doi.org/10.1021/nn403617j
  16. P. Huang, W. Zheng, S. Zhou, D. Tu, Z. Chen, H. Zhu, R. Li, E. Ma, M. Huang, and X. Chen, Lanthanide-doped $LiLuF_4$ upconversion nanoprobes for the detection of disease biomarkers, Angew. Chem. Int. Ed., 53, 1252-1257 (2014). https://doi.org/10.1002/anie.201309503
  17. J. Lai, B. P. Shah, Y. Zhang, L. Yang, and K. B. Lee, Real-time monitoring of ATP-responsive drug release using mesoporous-silicacoated multicolor upconversion nanoparticles, ACS Nano, 9, 5234-5245 (2015). https://doi.org/10.1021/acsnano.5b00641
  18. S. S. Lucky, N. Muhammad Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy, ACS Nano, 9, 191-205 (2015). https://doi.org/10.1021/nn503450t
  19. L. Zhou, R. Wang, C. Yao, X. Li, C. Wang, X. Zhang, C. Xu, A. Zeng, D. Zhao, and F. Zhang, Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers, Nat. Commun., 6, 6938 (2015). https://doi.org/10.1038/ncomms7938
  20. R. Naccache, E. M. Rodriguez, N. Bogdan, F. Sanz-Rodriguez, C. Cruz Mdel, A. J. Fuente, F. Vetrone, D. Jaque, J. G. Sole, and J. A. Capobianco, Multifunctional nanomaterials and their applications in drug delivery and cancer therapy, Cancers, 4, 1067-1105 (2012). https://doi.org/10.3390/cancers4041067
  21. S. Jin, L. Zhou, Z. Gu, G. Tian, L. Yan, W. Ren, W. Yin, X. Liu, X. Zhang, Z. Hu, and Y. Zhao, The evolution of gadolinium based contrast agents: From single-modality to multi-modality, Nanoscale, 5, 11910-11918 (2013). https://doi.org/10.1039/c3nr03515h
  22. M. Wang, Z. Chen, W. Zheng, H. Zhu, S. Lu, E. Ma, D. Tu, S. Zhou, M. Huang, and X. Chen, Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy, Nanoscale, 6, 8274-8282 (2014). https://doi.org/10.1039/c4nr01826e
  23. N. Bogdan, F. Vetrone, G. A. Ozin, and J. A. Capobianco, Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles, Nano Lett., 11, 835-840 (2011). https://doi.org/10.1021/nl1041929
  24. A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, and C. B. Murray, A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals, J. Am. Chem. Soc., 133, 998-1006 (2011). https://doi.org/10.1021/ja108948z
  25. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, and X. Liu, Tuning upconversion through energy migration in core-shell nanoparticles, Nat. Mater., 10, 968-973 (2011). https://doi.org/10.1038/nmat3149
  26. L. Liang, Y. Lu, R. Zhang, A. Care, T. A. Ortega, S. M. Deyev, Y. Qian, and A. V. Zvyagin, Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles, Acta Biomater., 51, 461-470 (2017). https://doi.org/10.1016/j.actbio.2017.01.004
  27. N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers, Nat. Med., 18, 1580-1585 (2012). https://doi.org/10.1038/nm.2933
  28. Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, and J. Yao, Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of $Nd^{3+}$-Sensitized nanoparticles, Adv. Mater., 26, 2831-2837 (2014). https://doi.org/10.1002/adma.201304903
  29. H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu, S. F. Yu, and F. Wang, Upconverting near-infrared light through energy management in core-shell-shell nanoparticles, Angew. Chem. Int. Ed., 52, 13419-13423 (2013). https://doi.org/10.1002/anie.201306811
  30. X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu, and X. Liu, Mechanistic investigation of photon upconversion in $Nd^{3+}$-sensitized core-shell nanoparticles, J. Am. Chem. Soc., 135, 12608-12611 (2013). https://doi.org/10.1021/ja4075002
  31. D. Wang, B. Xue, X. Kong, L. Tu, X. Liu, Y. Zhang, Y. Chang, Y. Luo, H. Zhao, and H. Zhang, 808 nm driven $Nd^{3+}$-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging, Nanoscale, 7, 190-197 (2015). https://doi.org/10.1039/C4NR04953E
  32. Y. Guan, H. Lu, W. Li, Y. Zheng, Z. Jiang, J. Zou, and H. Gao, Near-infrared triggered upconversion polymeric nanoparticles based on aggregation-induced emission and mitochondria targeting for photodynamic cancer therapy, ACS Appl. Mater. Inter., 9, 26731-26739 (2017). https://doi.org/10.1021/acsami.7b07768
  33. J. L. Vivero-Escoto, R. C. Huxford-Phillips, and W. Lin, Silica-based nanoprobes for biomedical imaging and theranostic applications, Chem. Soc. Rev., 41, 2673-2685 (2012). https://doi.org/10.1039/c2cs15229k
  34. P. Couleaud, V. Morosini, C. Frochot, S. Richeter, L. Raehm, and J. O. Durand, Silica-based nanoparticles for photodynamic therapy applications, Nanoscale, 2, 1083-1095 (2010). https://doi.org/10.1039/c0nr00096e
  35. P. Yang, S. Gai, and J. Lin, Functionalized mesoporous silica materials for controlled drug delivery, Chem. Soc. Rev., 41, 3679-3698 (2012). https://doi.org/10.1039/c2cs15308d
  36. H. Wang, X. Zhu, R. Han, X. Wang, L. Yang, and Y. Wang, Near-infrared light activated photodynamic therapy of THP-1 macrophages based on core-shell structured upconversion nanoparticles, Microporous Mesoporous Mater., 239, 78-85 (2017). https://doi.org/10.1016/j.micromeso.2016.09.048
  37. L. Liang, A. Care, R. Zhang, Y. Lu, N. H. Packer, A. Sunna, Y. Qian, and A. V. Zvyagin, Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy, ACS Appl. Mater. Interfaces, 8, 11945-11953 (2016). https://doi.org/10.1021/acsami.6b00713
  38. D. K. Chatterjee and Z. Yong, Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells, Nanomedicine, 3, 73-82 (2008). https://doi.org/10.2217/17435889.3.1.73
  39. W. Feng, X. Zhu, and F. Li, Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications, NPG Asia Mater., 5, 75 (2013). https://doi.org/10.1038/am.2013.63
  40. C. Wang, L. Cheng, and Z. Liu, Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics, Theranostics, 3, 317-330 (2013). https://doi.org/10.7150/thno.5284
  41. X. F. Qiao, J. C. Zhou, J. W. Xiao, Y. F. Wang, L. D. Sun, and C. H. Yan, Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro, Nanoscale, 4, 4611-4623 (2012). https://doi.org/10.1039/c2nr30938f
  42. Z. Hou, Y. Zhang, K. Deng, Y. Chen, X. Li, X. Deng, Z. Cheng, H. Lian, C. Li, and J. Lin, UV-emitting upconversion-based $TiO_2$ photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway, ACS Nano, 9, 2584-2599 (2015). https://doi.org/10.1021/nn506107c
  43. Z. Yu, Q. Sun, W. Pan, N. Li, and B. Tang, A near-infrared triggered nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy, ACS Nano, 9, 11064-11074 (2015). https://doi.org/10.1021/acsnano.5b04501
  44. D. Zheng, C. Pang, Y. Liu, and X. Wang, Shell-engineering of hollow g-$C_3N_4$ nanospheres via copolymerization for photocatalytic hydrogen evolution, Chem. Commun., 51, 9706-9709 (2015). https://doi.org/10.1039/C5CC03143E
  45. Y. Wang, F. Wang, Y. Zuo, X. Zhang, and L. F. Cui, Simple synthesis of ordered cubic mesoporous graphitic carbon nitride by chemical vapor deposition method using melamine, Mater. Lett., 136, 271-273 (2014). https://doi.org/10.1016/j.matlet.2014.08.078
  46. Y. Zheng, J. Liu, J. Liang, M. Jaroniec, and S. Z. Qiao, Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis, Energy Environ. Sci., 5, 6717-6731 (2012). https://doi.org/10.1039/c2ee03479d
  47. J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, and X. Wang, Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles, Nat. Commun., 3, 1139 (2012). https://doi.org/10.1038/ncomms2152
  48. L. Ge, C. Han, and J. Liu, Novel visible light-induced g-$C_3N_4/Bi_2WO_6$ composite photocatalysts for efficient degradation of methyl orange, Appl. Catal. B, 108-109, 100-107 (2011). https://doi.org/10.1016/j.apcatb.2011.08.014
  49. Y. Wang, X. Wang, and M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry, Angew. Chem. Int. Ed., 51, 68-89 (2012). https://doi.org/10.1002/anie.201101182
  50. X. Chen, J. Zhang, X. Fu, M. Antonietti, and X. Wang, Fe-g-$C_3N_4$-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light, J. Am. Chem. Soc., 131, 11658-11659 (2009). https://doi.org/10.1021/ja903923s
  51. L. Feng, F. He, Y. Dai, B. Liu, G. Yang, S. Gai, N. Niu, R. Lv, C. Li, and P. Yang, A versatile near infrared light triggered dual-photosensitizer for synchronous bioimaging and photodynamic therapy, ACS Appl. Mater. Inter., 9, 12993-13008 (2017). https://doi.org/10.1021/acsami.7b00651
  52. L. Feng, F. He, B. Liu, G. Yang, S. Gai, P. Yang, C. Li, Y. Dai, R. Lv, and J. Lin, g-$C_3N_4$ Coated upconversion nanoparticles for 808 nm near-infrared light triggered phototherapy and multiple imaging, Chem. Mater., 28, 7935-7946 (2016). https://doi.org/10.1021/acs.chemmater.6b03598
  53. S. De Koker, R. Hoogenboom, and B. G. De Geest, Polymeric multilayer capsules for drug delivery, Chem. Soc. Rev., 41, 2867-2884 (2012). https://doi.org/10.1039/c2cs15296g
  54. T. L. Doane and C. Burda, The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy, Chem. Soc. Rev., 41, 2885-2911 (2012). https://doi.org/10.1039/c2cs15260f
  55. K. Raemdonck, K. Braeckmans, J. Demeester, and S. C. De Smedt, Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery, Chem. Soc. Rev., 43, 444-472 (2014). https://doi.org/10.1039/C3CS60299K
  56. J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz, and P. Couvreur, Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery, Chem. Soc. Rev., 42, 1147-1235 (2013). https://doi.org/10.1039/C2CS35265F
  57. A. V. Ambade, E. N. Savariar, and S. Thayumanavan, Dendrimeric micelles for controlled drug release and targeted delivery, Mol. Pharm., 2, 264-272 (2005). https://doi.org/10.1021/mp050020d
  58. W. D. Jang, D. Yim, and I. H. Hwang, Photofunctional hollow nanocapsules for biomedical applications, J. Mater. Chem. B, 2, 2202-2211 (2014).
  59. V. Biju, Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy, Chem. Soc. Rev., 43, 744-764 (2014). https://doi.org/10.1039/C3CS60273G
  60. F. Tang, L. Li, and D. Chen, Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery, Adv. Mater., 24, 1504-1534 (2012). https://doi.org/10.1002/adma.201104763
  61. R. Anand, M. Malanga, I. Manet, F. Manoli, K. Tuza, A. Aykac, C. Ladaviere, E. Fenyvesi, A. Vargas Berenguel, R. Gref, and S. Monti, Citric acid-${\gamma}$-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery, Photochem. Photobiol. Sci., 12, 1841-1854 (2013). https://doi.org/10.1039/c3pp50169h
  62. X. Liu, F. Fu, K. Xu, R. Zou, J. Yang, Q. Wang, Q. Liu, Z. Xiao, and J. Hu, Folic acid-conjugated hollow mesoporous silica/CuS nanocomposites as a difunctional nanoplatform for targeted chemo-photothermal therapy of cancer cells, J. Mater. Chem. B, 2, 5358-5367 (2014).
  63. C. Dong, Z. Liu, S. Wang, B. Zheng, W. Guo, W. Yang, X. Gong, X. Wu, H. Wang, and J. Chang, A protein-polymer bioconjugate-coated upconversion nanosystem for simultaneous tumor cell imaging, photodynamic therapy, and chemotherapy, ACS Appl. Mater. Inter., 8, 32688-32698 (2016). https://doi.org/10.1021/acsami.6b11803
  64. R. Lv, P. Yang, F. He, S. Gai, G. Yang, Y. Dai, Z. Hou, and J. Lin, An imaging-guided platform for synergistic photodynamic/photothermal/chemo therapy with pH/temperature-responsive drug release, Biomaterials, 63, 115-127 (2015). https://doi.org/10.1016/j.biomaterials.2015.05.016

피인용 문헌

  1. SHG-enhanced NIR-excited in vitro photodynamic therapy using composite nanoparticles of barium titanate and rose Bengal vol.9, pp.14, 2019, https://doi.org/10.1039/c9ra00432g