DOI QR코드

DOI QR Code

Tension Stiffening Effect and Crack Behavior of Tension Members Using High Strength Concrete

고강도 콘크리트 인장부재의 인장강화효과와 균열거동

  • Received : 2018.01.25
  • Accepted : 2018.03.02
  • Published : 2018.03.30

Abstract

The verification of serviceability of concrete structures requires more informations on the composite behaviors between concrete and reinforcement. Among them, the investigation of crack widths and spacings is based on the tension stiffening effects. In this paper, the tension stiffening effects of high strength concrete members with compressive strength of 80 and 100MPa are investigated experimentally. It was found that the current design code which is based on the tests of normal strength concrete may not describe the tension stiffening effects in high strength concrete correctly. The coefficient that can appropriately reflect the tension stiffening effects in the high strength concrete was proposed. Also, the crack spacing was investigated through the cracking behaviors and the crack width according to the difference of the strains in steel and concrete was estimated. The results of this paper may be used to examine the tension stiffening effects of high strength concrete members.

콘크리트 구조물의 사용성능을 검증하기 위하여 콘크리트와 철근의 상호 합성 작용에 대한 많은 정보가 필요한데, 균열폭 및 균열간격의 평가는 두 재료의 상호작용인 인장강화효과에 근거하여 이루어진다. 이 논문에서는 압축강도 80MPa 및 100MPa의 고강도 콘크리트에 D13 철근을 사용한 인장부재를 제작하여 직접인장실험을 진행하였다. 이를 통해 고강도 콘크리트의 인장강화 효과를 파악하였고 보통강도 콘크리트의 실험결과에 근거한 현행설계기준의 인장강화효과 평가가 부적절함을 확인하였다. 실험결과에 근거하여 고강도 콘크리트 콘크리트의 특성을 적절하게 반영할 수 있는 실험계수를 산정하였다. 또한 균열거동을 통해서 균열간격을 파악하고 이를 통해 고강도 콘크리트의 인장강화효과에 따른 철근변형률과 콘크리트 변형률 차이에 따른 균열폭을 확인하였다. 이 연구의 결과는 향후 고강도 콘크리트 부재의 인장강화 효과를 연구하는 기초자료로 활용될 수 있을 것이다.

Keywords

References

  1. Abrishami, H.H., Mitchell, D. (1996). Influence of splitting cracks on tension stiffening, ACI Structural Journal, 93(6), 703-710.
  2. ACI Committee 224. (1986). Cracking of concrete members in direct tension, ACI Journal, 83(4).
  3. Broms, B.B., Lutz, L.A. (1965). Effect of arrangement of reinforcement on crack width and spacing of reinforced concrete members, ACI Journal, 62(11), 1395-1420.
  4. CEB-FIP. CEB-FIP model code 1990(1991), Comite Euro Intemational Du Beton, Paris, 87-109.
  5. Eurocode 2. (2004). Design of Concrete Structures Part 1-1: general Rules and Rules for Buildings, European Committee for Standardisation, Brussels.
  6. Eurocode 2. (2005). Design of Concrete Structures Part 2: Concrete Bridges - Design and Detailing Rules, European Committee for Standardisation, Brussels.
  7. FIb. (2013). Fib Model code 2010. First Complete Draft - Volume 2, Fed Ration Internationale Du beton, Switzerland, 137-140.
  8. Korea Institute of Bridge and Structural Engineers(KIBSE). (2015). Korea Highway Bridge Design Code, Construction Information Press, Seoul, 5-127-5-130 [in Korean].
  9. Kim, W. (2014). Limit State Design of Concrete Structures, DongHwa Technology Publishing Co., Seoul, 90-91 [in Korean].
  10. Kim, W., Lee, K.Y., Yeom, H.S. (2001). A study on the bonding characteristics and crack behavior of high strength concrete tension member(1)-to the center of tension stiffening effect, Journal of the Korean Society of Civil Engineers, KSCE, 21(5-a), 687-697 [in Korean].
  11. Lee, K.Y., Kim, M.J., Kim, W., Lee, H.M. (2011). Tension stiffening effect considering cover thickness in reinforced concrete tension members, Journal of the Korea Concrete Institute, 27(6), [in Korean].
  12. Lee, M.S., Seo, T.S., No, Y.S. (2011). Experimental study on bond strength of high strength concrete flexural member under crack stabilization, Journal of the Architectural Institute of Korea - Structure, 27(9), 37-44 [in Korean].
  13. Rizkalla, S.H., Hwang, L.S. (1986). Crack predictionfor members in uniaxial tension, ACI Journal, 81(6), 572-579.