DOI QR코드

DOI QR Code

Effects of Gardenia jasminoides Ellis Peel Extract in Namhae Korea on the Bioactivity Compounds and Lipid Peroxidation Inhibition Activity

남해산 치자(Gardenia jasminoides Ellis fructus) 껍질의 생리활성 및 지질과산화 저해 활성에 미치는 영향

  • Jin, Dong-Hyeok (Department of Food Science and Technology, Pusan National University) ;
  • Oh, Da-Young (Department of Food Science and Technology, Pusan National University) ;
  • Kang, Dong-Soo (Department of Marine Bio Food Science, Chonnam National University) ;
  • Lee, Young-Geun (Department of Food Science and Technology, Pusan National University) ;
  • Kim, Han-Soo (Department of Food Science and Technology, Pusan National University)
  • 진동혁 (부산대학교 식품공학과) ;
  • 오다영 (부산대학교 식품공학과) ;
  • 강동수 (전남대학교 해양바이오식품학과) ;
  • 이영근 (부산대학교 식품공학과) ;
  • 김한수 (부산대학교 식품공학과)
  • Received : 2018.02.28
  • Accepted : 2018.03.23
  • Published : 2018.03.30

Abstract

The object of this study was to measure the bioactivity and lipid peroxidation inhibition activity of peel from Gardenia jasminoides Ellis fructus (GJE) in Namhae Korea. The amount of phytic acid was also determined. Extraction was performed using three solvents, CM (choloform:methanol, 2:1, v/v), n-butanol and 70% ethanol. To investigate by the solvent extract of total phenol content and value as a functional food ingredient of GJE peel through nitrogen oxide scavenging activity, antioxidant activity, reducing power and lipid peroxidation inhibition were performed. The bioactivities of the extract solvents increased significantly with increasing concentrations (0.2, 0.4, 0.6 mg/mL, p<0.05). The total phenol contents of GJE peel extracts were highest in CM ($39.74{\pm}0.15mg\;CAE/g$) extract. The order of total phenol contents, antioxidant activity and reducing power of the solvents in the GJE peel were the same, in the analysis of nitrogen oxides scavenging activity and lipid peroxidation inhibition, it was confirmed the results were inconsistent. As a result, the GJE peel showed excellent bioactivities. Considering the extraction yield and various physiological activities, it is considered that efficiency is better when extracted from CM and 70% ethanol extracts.

치자 껍질의 phytic acid 함량과 CM (chloroform:methanol, 2:1, v/v), n-부탄올 및 70% 에탄올을 사용한 추출물의 용매(3가지) 별 총 페놀 함량 및 항산화 활성 능력 등을 통하여 치자 껍질의 효용 가치를 검토한 결과, phytic acid 함량은 $4.966{\pm}0.996mg\;PAE/g\;DW$ (dry weight)로 나타났으며, 용매 별 생리 활성은 농도(0.2, 0.4, 0.6 mg/mL)가 높아질수록 유의적으로 증가하였으며(p<0.05), 양성대조군으로 사용된 ascorbic acid, BHA, trolox 보다는 각 농도에서 낮은 활성이 관찰되었다. 치자 껍질의 총 페놀 함량은 CM, n-부탄올, 70% 에탄올 추출물 순으로 CM 추출물에서 $39.74{\pm}0.15mg\;CAE/g$으로 가장 높았으며, nitric oxide (NO) 라디칼 소거능과 지질과산화 저해능은 용매 별로 CM > 70% 에탄올 > n-부탄올, nitrite ($NO_2$) 소거능은 n-부탄올 > CM > 70% 에탄올, ${\beta}-carotene$ 탈색 저해능과 환원력은 CM > n-부탄올 > 70% 에탄올 순의 활성이 나타났다. 이상의 결과, 치자 껍질의 용매 별 총 페놀 함량 순과 항산화력, 환원력은 일치 하였으며, 질소산화물 소거능과 지질과산화 저해능 분석에서는 일치하지 않은 것으로 확인되었다. 이는 질소산화물 소거능과 지질과산화 저해능은 페놀 성분 보다 다른 생리활성물질이 더 큰 영향을 주는 것으로 추정된다. 이에, 치자 껍질은 질소산화물 소거능, 항산화능 및 지질과산화 저해능 등이 우수한 것으로 나타나 기능성 식품 소재로서의 가치가 있는 것으로 판단된다.

Keywords

References

  1. K. Menrad, “Market and marketing of functional food in Europe,” J. Food Eng., Vol. 56, No. 2, pp. 181-188, (2003). https://doi.org/10.1016/S0260-8774(02)00247-9
  2. J. S. Hwang, B. H. Lee, X. An, H. R. Jeong, Y. E. Kim, I. Lee, H. Lee, D. O. Kim, “Total phenolics, total flavonoids, and antioxidant capacity in the leaves, bulbs, and roots of Allium hookeri,” Korean J. Food Sci. Technol., Vol. 47, No. 2, pp. 261-266, (2015). https://doi.org/10.9721/KJFST.2015.47.2.261
  3. S. A. Vanacker, M. N. Tromp, G. R. Haenen, W. J. F. Vandervijgh, A. Bast, “Flavonoids as scavengers of nitric oxide radical,” Biochem. Biophys. Res. Commun., Vol. 214, No. 3, pp. 755-759, (1995). https://doi.org/10.1006/bbrc.1995.2350
  4. S. T. Koo, M. S. Cho, S. S. Park, Y. T. Kim, K. J. Park, K. S. Kim, I. C. Sohn, “Effect of frutus gardeniae herbal acupuncture on the rat model of ankle sprain pain,” Korean J. Acupunct., Vol. 22, No. 2, pp. 57-74, (2005).
  5. T. Q. Pham, F. Cormier, E. Farnworth, V. H. Tong, M. R. Van Calsteren, “Antioxidant properties of crocin from Gardenia jasminoides Ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen,” J. Agric. Food Chem., Vol. 48, No. 5, pp. 1455-1461, (2000). https://doi.org/10.1021/jf991263j
  6. I. A. Lee, J. H. Lee, N. I. Baek, D. H. Kim, “Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin,” Biol. Pharm. Bull., Vol. 28, No. 11, pp. 2106-2110, (2005). https://doi.org/10.1248/bpb.28.2106
  7. M. P. Kahkonen, A. I. Hopia, M. Heinonen, “Berry phenolics and their antioxidant activity, J. Agric,” Food Chem., Vol. 49, No. 8, pp. 4076-4082, (2001). https://doi.org/10.1021/jf010152t
  8. D. L. Luthria, Y. Lu, K. M. John, "Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties," J. Funct. Foods, Vol. 18, pp. 910-925, (2015). https://doi.org/10.1016/j.jff.2015.01.001
  9. H. J. Shin, “A trend in research and development of natural gardenia pigments,” KSBB Journal, Vol. 22, No. 5, pp. 271-277, (2007).
  10. A. B. Khattak, A. Zeb, N. Bibi, S. A. Khalil, M. S. Khattak, “Influence of germination techniques on phytic acid and polyphenols content of chickpea (Cicerarietinum L.) sprouts,” Food Chem., Vol. 104, No. 3, pp. 1074-1079, (2007). https://doi.org/10.1016/j.foodchem.2007.01.022
  11. T. Swain, W. E. Hillis, “The phenolic constituents of Prunus domestica. I.-The quantitative analysis of phenolic constituents,” J. Sci. Food Agric., Vol. 10, No. 1, pp. 63-68, (1959). https://doi.org/10.1002/jsfa.2740100110
  12. J. S. Beckman, W. H. Koppenol, "Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly," American J. Physiol.: Cell Physiol., Vol. 271, No. 5, pp. C1424-C1437, (1996). https://doi.org/10.1152/ajpcell.1996.271.5.C1424
  13. Y. H. Kang, Y. K. Park, G. D. Lee, “The nitrite scavenging and electron donating ability of phenolic compounds,” Korean J. Food Sci. Technol., Vol. 28, No. 2, pp. 232-239, (1996).
  14. H. Takada, K. Kokubo, K. Matsubayashi, T. Oshima, “Antioxidant activity of supramolecular water-soluble fullerenes evaluated by ${\beta}$-carotene bleaching assay,” Biosci. Biotechnol. Biochem., Vol. 70, No. 12, pp. 3088-3093, (2006). https://doi.org/10.1271/bbb.60491
  15. M. Singhal, A. Paul, H. P. Singh, “Synthesis and reducing power assay of methyl semicarbazone derivatives,” J. Saudi Chem. Soc., Vol. 18, No. 2, pp. 121-127, (2014). https://doi.org/10.1016/j.jscs.2011.06.004
  16. N. Siriwardhana, K. W. Lee, Y. J. Jeon, S. H. Kim, J. W. Haw, “Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition,” Food Sci. Technol. Int., Vol. 9, No. 5, pp. 339-346, (2003). https://doi.org/10.1177/1082013203039014
  17. K. Midorikawa, M. Murata, S. Oikawa, Y. Hiraku, S. Kawanishi, “Protective effect of phytic acid on oxidative DNA damage with reference to cancer chemoprevention,” Biochem. Biophys. Res. Commun., Vol. 288, No. 3, pp. 552-557, (2001). https://doi.org/10.1006/bbrc.2001.5808
  18. E. Graf, J. W. Eaton, “Antioxidant functions of phytic acid,” Free Radical Biol. Med., Vol. 8, No. 1, pp. 61-69, (1990). https://doi.org/10.1016/0891-5849(90)90146-A
  19. J. H. Yoon, L. U. Thompson, D. J. Jenkins, “The effect of phytic acid on in vitro rate of starch digestibility and blood glucose response,” American J. Clin. Nutr., Vol. 38, No. 6, pp. 835-842, (1983). https://doi.org/10.1093/ajcn/38.6.835
  20. J. R. Zhou, J. W. Erdman Jr, “Phytic acid in health and disease,” Crit. Rev. Food Sci. Nutr., Vol. 35, No. 6, pp. 495-508, (1995). https://doi.org/10.1080/10408399509527712
  21. W. J. Lee, “Phytic acid content and phytase acivity of barley,” J. Korean Soc. Food Sci. Nutr., Vol. 18, No. 1, pp. 40-46, (1989).
  22. M. M. Tabekhia, B. S. Luh, “Effect of germination, cooking, and canning on phosphorus and phytate retention in dry beans,” J. Food Sci., Vol. 45, No. 2, pp. 406-408, (1980). https://doi.org/10.1111/j.1365-2621.1980.tb02631.x
  23. L. Bravo, "Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance," Nutr. Rev., Vol. 56, No. 11 pp. 317-333, (1998). https://doi.org/10.1111/j.1753-4887.1998.tb01670.x
  24. Y. Cai, Q. Luo, M. Sun, H. Corke, “Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer,” Life Sci., Vol. 74, No. 17, pp. 2157-2184, (2004). https://doi.org/10.1016/j.lfs.2003.09.047
  25. M. Marietta, “Nitric oxide synthase: aspects concerning structure and catalysis,” Cell, Vol. 78, No. 6, pp. 927, (1994). https://doi.org/10.1016/0092-8674(94)90268-2
  26. L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, S. R. Tannenbaum, “Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids,” Anal. Biochem., Vol. 126, No. 1, pp. 131-138, (1982). https://doi.org/10.1016/0003-2697(82)90118-X
  27. D. Pastore, D. Trono, L. Padalino, S. Simone, D. Valenti, N. Di Fonzo, S. Passarella, “Inhibition by ${\alpha}$-tocopherol and L-ascorbate of linoleate hydroperoxidation and ${\beta}$-carotene bleaching activities in durum wheat semolina,” J. Cereal Sci., Vol. 31, No. 1, pp. 41-54, (2000). https://doi.org/10.1006/jcrs.1999.0278
  28. R. Pulido, L. Bravo, F. Saura-Calixto, “Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay,” J. Agric. Food Chem., Vol. 48, No. 8, pp. 3396-3402, (2000). https://doi.org/10.1021/jf9913458
  29. B. D. Banerjee, V. Seth, A. Bhattacharya, S. T. Pasha, A. K. Chakraborty, "Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers," Toxicol. Lett., Vol. 107, No. 1 pp. 33-47, (1999). https://doi.org/10.1016/S0378-4274(99)00029-6
  30. Y. Yamamoto, M. H. Brodsky, J. C. Baker, B. N. Ames, “Detection and characterization of lipid hydroperoxides at picomole levels by high-performance liquid chromatography,” Anal. Biochem., Vol. 160, No. 1, pp. 7-13, (1987). https://doi.org/10.1016/0003-2697(87)90606-3
  31. H. Esterbauer, “Cytotoxicity and genotoxicity of lipid-oxidation products,” American J. Clin. Nutr., Vol. 57, No. 5, pp. 779S-785S, (1993). https://doi.org/10.1093/ajcn/57.5.779S