DOI QR코드

DOI QR Code

Numerical Analysis of the Incident Ion Energy and Angle Distribution in the DC Magnetron Sputtering for the Variation of Gas Pressure

  • Hur, Min Young (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Oh, Sehun (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Kim, Ho Jun (Memory Thin Film Technology Team, Samsung Electronics) ;
  • Lee, Hae June (Department of Electrical and Computer Engineering, Pusan National University)
  • Received : 2018.01.12
  • Accepted : 2018.04.03
  • Published : 2018.03.31

Abstract

The ion energy and angle distributions (IEADs) in the DC magnetron sputtering systems are investigated for the variation of gas pressure using particle-in-cell simulation. Even for the condition of collisionless ion sheath at low pressure, it is possible to change the IEAD significantly with the change of gas pressure. The bombarding ions to the target with low energy and large incident angle are observed at low pressure when the sheath voltage drop is low. It is because the electron transport is hindered by the magnetic field at low pressure because of few collisions per electron gyromotion while the ions are not magnetized. Therefore, the space charge effect is the most dominant factor for the determination of IEADs in low-pressure magnetron sputtering discharges.

Keywords

References

  1. P. J. Kelly and R. D. Arnell, Vaccum 56, 159-172 (2000). https://doi.org/10.1016/S0042-207X(99)00189-X
  2. W. Gao, Z. Li, Ceram. Int. 30, 1155-1159 (2004). https://doi.org/10.1016/j.ceramint.2003.12.197
  3. K. Sarakinos, J. Alami, and S. Konstantinidis, Surf. Coat. Tech. 204, 1661-1684 (2010). https://doi.org/10.1016/j.surfcoat.2009.11.013
  4. K. Ellmer and T. Welzel, J. Mater. Res. 27, 765-779 (2012). https://doi.org/10.1557/jmr.2011.428
  5. S. H. Jeong and J. H. Boo, Thin Solid Films 447-448, 105-110 (2004).
  6. S. Mraz and J. M. Schneider, J. Appl. Phys. 100, 023503 (2006). https://doi.org/10.1063/1.2216354
  7. M.-J. Keum and J.-H. Han J. Korean Phys. Soc. 53, 1580-1583 (2008). https://doi.org/10.3938/jkps.53.1580
  8. H. C. Nguyen, T. T. Trinh, T. Le, C. V. Tran, T. Tran, H. Park, V. A. Dao, and J. Yi, Semicond. Sci. Technol. 26, 105022 (2011). https://doi.org/10.1088/0268-1242/26/10/105022
  9. J. P. Verboncoeur, Plasma, Phys. Controlled Fusion 47, A231 (2005). https://doi.org/10.1088/0741-3335/47/5A/017
  10. C. H. Shon, J. K. Lee, H. J. Lee, Y. Yang, and T. H. Chung, IEEE T. Plasma Sci. 26, 1635-1644 (1998). https://doi.org/10.1109/27.747881
  11. C. H. Shon and J. K. Lee, Appl. Surf. Sci. 192, 258-269 (2002). https://doi.org/10.1016/S0169-4332(02)00030-2
  12. S. Kuroiwa, T. Mine, T. Yakisawa and T. Makabe, J. Vac. Sci. Technol. B 23, 2218-2221 (2005). https://doi.org/10.1116/1.2009771
  13. I. Kolev and A. Bogaerts, IEEE T. Plasma Sci. 34, 886-894 (2006) https://doi.org/10.1109/TPS.2006.875843
  14. T. Makabe and T. Yakisawa, Mater. Sci. Forum 555, 65-71 (2007). https://doi.org/10.4028/www.scientific.net/MSF.555.65
  15. Z. Hua-Yu and M. Zong-Xin, Chinese Phys. B 17, 1475-1479 (2008). https://doi.org/10.1088/1674-1056/17/4/055
  16. V. K. Decyk and T. V. Singh, Comput. Phys. Comm. 185, 708-719 (2014). https://doi.org/10.1016/j.cpc.2013.10.013
  17. C. K. Birdsall and A. b. Langdon, Plasma Physics vis Computer Simulation, Taylor & Francis Group (2005).
  18. V. Vahedi and M. Surendra, Comput. Phys. Comm. 87, 179-198 (1995). https://doi.org/10.1016/0010-4655(94)00171-W
  19. P. Sigmund, Phys. Rev. 184, 383-416 (1969). https://doi.org/10.1103/PhysRev.184.383
  20. M. P. Seah and T. S. Nunney, J. Phys. D: Appl. Phys. 43, 253001 (2010). https://doi.org/10.1088/0022-3727/43/25/253001
  21. R. Behrisch and W. Eckstein, Sputtering by particle Bombardment, Springer (2007).
  22. Y. Yamamura and H. Tawara, Atom. Data Nucl. Data 62, 149-253 (1996). https://doi.org/10.1006/adnd.1996.0005
  23. V. Vahedi and G. DiPeso, J. Comput. Phys. 131, 149-163 (1997). https://doi.org/10.1006/jcph.1996.5591