DOI QR코드

DOI QR Code

Optimization of Microwave-Assisted Pretreatment Conditions for Enzyme-free Hydrolysis of Lipid Extracted Microalgae

탈지미세조류의 무효소 당화를 위한 마이크로파 전처리 조건 최적화

  • Jung, Hyun jin (Department of Food Science, Sunmoon University) ;
  • Min, Bora (Department of Food Science, Sunmoon University) ;
  • Kim, Seung Ki (Department of Food Science, Sunmoon University) ;
  • Jo, Jae min (Department of Food Science, Sunmoon University) ;
  • Kim, Jin Woo (Department of Food Science, Sunmoon University)
  • Received : 2017.05.28
  • Accepted : 2017.11.21
  • Published : 2018.04.01

Abstract

The purpose of this study was to effectively produce the biosugar from cell wall of lipid extracted microalgae (LEA) by using microwave-assisted pretreatment without enzymatic hydrolysis process. Response surface methodology (RSM) was applied to optimization of microwave-assisted pretreatment conditions for the production of biosugar based on enzyme-free process from LEA. Microwave power (198~702 W), extraction time (39~241 sec), and sulfuric acid (0~1.0 mol) were used as independent variables for central composite design (CCD) in order to predict optimum pretreatment conditions. It was noted that the pretreatment variables that affect the production of glucose (C6) and xylose (C5) significantly have been identified as the microwave power and extraction time. Additionally, the increase in microwave power and time had led to an increase in biosugar production. The superimposed contour plot for maximizing dependent variables showed the maximum C6 (hexose) and C5 (pentose) yields of 92.7 and 74.5% were estimated by the predicted model under pretreatment condition of 700 w, 185.7 sec, and 0.48 mol, and the yields of C6 and C5 were confirmed as 94.2 and 71.8% by experimental validation, respectively. This study showed that microwave-assisted pretreatment under low temperature below $100^{\circ}C$ with short pretreatment time was verified to be an effective enzyme free pretreatment process for the production of biosugar from LEA compared to conventional pretreatment methods.

본 연구의 목적은 탈지미세조류(LEA) 세포벽 분해를 통한 바이오당 생산에 있어 당화효소 사용없이 마이크로파 전처리만을 이용하여 글루코오스와 자일로오스를 생산하는 것이다. LEA의 주성분인 셀룰로오스와 헤미셀룰로오스의 무효소 당화를 위해 산 가수분해 기반의 마이크로파 전처리 조건을 반응표면분석법을 이용하여 최적화하였다. 마이크로파를 이용한 무효소 당화 공정의 주요 변수는 마이크로파 출력(198~702 W), 전처리 시간(39~241 sec)와 황산 농도(0~0.1 mol)로 최적 조건 예측을 위해 중심합성계획법을 이용하여 2차 회귀함수를 도출하였다. 마이크로파 출력과 전처리 시간이 LEA로부터 육탄당(C6)과 오탄당(C5) 생산에 유의한 영향을 주는 변수이며 증가에 따라 육탄당과 오탄당 당화율이 증가하는 경향을 확인하였다. 육탄당과 오탄당 당화율 최대화를 위한 산 가수분해를 적용한 마이크로파 전처리 최적 조건은 마이크로파 출력 700 W, 전처리 시간 185.7 sec와 황산 0.48 mol으로 육탄당 당화율 92.7%와 오탄당 당화율 74.5%가 예측되었으며 확인 실험을 통해 육탄당 당화율 94.2%와 오탄당 당화율 70.8%가 확인되어 예측의 유효성을 확인할 수 있었다. 이는 LEA의 셀룰로오스와 헤미셀룰로오스 당화를 위해 산 가수분해 적용 마이크로파 전처리만을 이용한 무효소 당화 공정 적용과 $100^{\circ}C$ 이하의 낮은 온도와 짧은 전처리 시간 적용을 가능하여 기존 전처리 대비 효과적인 공정 임을 입증했다.

Keywords

References

  1. Lee, J. S., "Status and Prospects of Cellulosic Ethanol R&D," Korean Ind. Chem. News., 16(2), 38-48(2013).
  2. Choi, K. S., Ryu, J. H., Park, D. J., Oh, S. C. and Kwak, H., "Lipid Extraction from NannoChloropsis sp. Microalgae for Biodiesel Production Using Supercritical Carbon Dioxide," Korean Chem. Eng. Res., 53(2), 205-210(2015). https://doi.org/10.9713/kcer.2015.53.2.205
  3. Yusuf, C., "Biodiesel from Microalgae," Biotechnol. Adv., 25, 294-306(2007). https://doi.org/10.1016/j.biotechadv.2007.02.001
  4. Kim, T. H., "Sequential Hydrolysis of Hemicellulose and Lignin in LignoCellulosic Biomass by Two-stage Percolation Process Using Dilute Sulfuric Acid and Ammonium Hydroxide," Korean J. Chem. Eng., 28(11), 2156-2162(2011). https://doi.org/10.1007/s11814-011-0093-6
  5. Demirbas, A., "Political, Economic and Environmental Impacts of Biofuels. A Review," Appl. Energy., 86, 108-117(2009). https://doi.org/10.1016/j.apenergy.2009.04.036
  6. Zhu, L. D., Hiltunen, E., Antila, E., Zhong, J. J., Yuan, Z. H. and Wang, Z. M., "Microalgal Biofuels: Flexible Bioenergies for Sustainable Development," Renew. Sust. Energ. Rev., 30, 1035-1046(2014). https://doi.org/10.1016/j.rser.2013.11.003
  7. Yoo, S. J., Oh, S. K. and Lee, J. M., "Sensitivity Analysis with Optimal Input Design and Model Perdictive Control for Microalgal Bioreactor Systems," Korean Chem. Eng. Res., 51, 87-92(2013). https://doi.org/10.9713/kcer.2013.51.1.87
  8. Kim, J. T., Ahn, D. G., Park, J. R., Park, J. W. and Jeong, S. H., "Recent Trends of the Development of Photobioreactors to Cultivate Microalgae," J. Korean SoC. Prec. Eng., 28, 125-132(2011).
  9. Antonio, D. L. H., Angel. D. O. and andres, M., "Microwaves in Organic Synthesis. Thermal and Non-thermal Microwave Effects," Chem. Soc. Rev., 34, 164-168(2005). https://doi.org/10.1039/B411438H
  10. Hu, Z. H. and Wen, Z. Y., "Enhancing Enzymatic Digestibility of Switchgrass by Microwave-assisted Alkali Pretreatment," Bio-chem, Eng, J., 38, 369-378(2008).
  11. Lee, S. M., Choi, I. S., Kim, S. K. and Lee, J. H., "Production of Bio-ethanol from Brown Algae by Enzymic Hydrolysis," Korean Soc. Biotechnol. Bioeng., 24, 483-488(2009).
  12. Park, J. Y., Lee, G. A., Kim, K. T., Kim, K. Y., Choi, S. A., Jung, M. J. and Oh, Y. K., "Microalgal Oil Recovery by Solvent Extraction from Nannochloropsis oceanica," Korean Chem. Eng. Res., 52, 88-91(2014). https://doi.org/10.9713/kcer.2014.52.1.88
  13. Gomez, L. D., Steele-King, C. and McQueen-Mason, S. J., "Sustainable Liquid Biofuels from Biomass: the Writing's on the Walls," New Phytologist., 178, 473-485(2008). https://doi.org/10.1111/j.1469-8137.2008.02422.x
  14. Nigam, P. S. and Singh, A., "Production of Liquid Biofuels from Renewable Resources," Prog. energy comb. Sci., 37, 52-68(2011). https://doi.org/10.1016/j.pecs.2010.01.003
  15. Singh, A., Nigam, P. S. and Murphy, J. D., "Renewable Fuels from Algae: An Answer to Debatable Land Based Fuels," Bioresour. Technol., 102, 10-16(2011). https://doi.org/10.1016/j.biortech.2010.06.032
  16. Johan, B. Ragna, P. and Folke, T., "Enhanced Enzymatic Conversion of Softwood LignoCellulose by Poly(ehtylene glycol) Addition," Enz. Microb. Technol., 40, 754-762(2007). https://doi.org/10.1016/j.enzmictec.2006.06.006
  17. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S. and Fukuda, K., "Effects of Cellulose Crystallinity, Hemicellulose, and Lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides," Biosci. Biotechnol. Biochem., 72, 805-810(2008). https://doi.org/10.1271/bbb.70689
  18. Balata, M., Balata, H. and Cahide, Oz., "Progress in Bioethanol Processing," Prog. Energy Comb. Sci., 34, 551-573(2008). https://doi.org/10.1016/j.pecs.2007.11.001
  19. Cha, H. R., In, Y. S. and Kim, S. K., "Bioethanol Production from Macroalgal Biomass," J. Life Sci., 26, 976-982(2016). https://doi.org/10.5352/JLS.2016.26.8.976
  20. Chen, W. H., Tu, Y. J. and Sheen, H. K., "Impact of Dilute Acid Pretreatment on the Structure of Bagasse for Producing Bioethanol," Int. J. Energy Res., 34, 265-274(2010). https://doi.org/10.1002/er.1566
  21. Song, M. K. and Na, C. K., "Microwave-Assisted Acid-Hydolysis of Laminaria Japonica and its Ethanol Productivity: Comparison with Conventional Heating," J. Korean Soc. New Renewable Energy., 9, 5-14(2013).
  22. Mandal, V., Mohan, Y. and Hemalatha, S., "Microwaveassisted Extraction - An Innovative and Promising Extraction Tool for Medicinal Research," Phcog. Rev., 1, 7-18(2007).
  23. Raymond, R. and Ehrman, T., "Determination of Carbohydrates in Biomass by High Performance Liquid Chromatography," Lab. Anal. Proced. No.002, National Renewable Research Laboratory( 1996).
  24. D, Templeton. and Ehrman. T., "Determination of acid-insoluble lignin in biomass," Lab. Anal. Proced. No.002, National Renewable Research Laboratory(1995).
  25. Zhang, L., Hong, L. J., Zhong, L. S. and Lewis, L. Z., "Challenges of cellulosic ethanol production from xylose-extracted corncob residues," Bioresour. Technol., 6(4), 4302-4316(2011).
  26. Benzerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. and Escaleira, L. A., "Response Surface Methodology (RSM) as a tool for optimization in analytical chemistry," Talanta., 76, 965-977 (2008). https://doi.org/10.1016/j.talanta.2008.05.019
  27. Oh, H. M., Kim, J. S. and Lee, S. J., "Biological Fixation of Global Warming Gas by Microalgae," Korean J. Enviro. Biol., 16, 291- 297(1998).
  28. Jang, E. K., Shin, H. K. and Pack, S. P., "Recent Researches for Diatom as Inorganic and Bioenvironmental Materials," Korean Soc. Biotechnol. Bioeng., 29, 9-21(2014).
  29. Mosier, N., Wyman, C., Dale., B., Ekander, R., Lee, Y. Y., Holtzapple, M. and Ladisch, M., "Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass," Bioresour. Technol., 96, 673-686(2005). https://doi.org/10.1016/j.biortech.2004.06.025
  30. Im, J. Y., Hong, S. S., Lee, G. D. and Park. S. S., "Application of Microwave Energy in Chemical Engineering," Korean Chem. Eng. Res., 42(5), 485-493(2004).
  31. Jeong, G. T., Yang, H. S., Park, S. H. and Park, D. H., "Optimization of Biodesiel Production from Rapeseed Oil Using Response Surface Methodology," Korean Soc. Biotechnol. Bioeng., 22, 222-227(2007).
  32. Seo, D. I., Kim, C. J. and Kim, S. B., "Pretreatment of Wastepaper using Aqueous Glycerol under High Pressure to Enhance Enzymatic Hydrolysis," Korean Soc. Biotechnol. Bioeng., 29(3), 193-198(2014).
  33. Kim, H. Y., Lee, E. S., Kim, W. S., Suh, D. J. and Ahn, B. S., "Material and Heat Balances of Bioethanol Production Process by Concentrated Acid Saccharification Process from Lignocellulosic Biomass," Clean Technol., 17, 156-165(2011).
  34. Park, J. H. and Kim, J. S., "Two-step Acid Hydrolysis Method for Producing Fermentable Sugar from Lignocellulosic Biomass," Korean Chem. Eng. Res., 54(1), 1-5(2016). https://doi.org/10.9713/kcer.2016.54.1.1
  35. Wu, F. C., Wu, J. Y., Liao, Y. J., Wang, M. Y. and Shin, I. L., "Sequential Acid and Enzymatic Hydrolysis in situ and Bioethanol Production from Gracilaria biomass," Bioresour. Technol., 156, 123-131(2014). https://doi.org/10.1016/j.biortech.2014.01.024