DOI QR코드

DOI QR Code

Measurement of Barium Ion Displacement Near Surface in a Barium Titanate Nanoparticle by Scanning Transmission Electron Microscopy

  • Aoki, Mai (Department of Materials Science and Engineering, Kyushu University) ;
  • Sato, Yukio (Department of Materials Science and Engineering, Kyushu University) ;
  • Teranishi, Ryo (Department of Materials Science and Engineering, Kyushu University) ;
  • Kaneko, Kenji (Department of Materials Science and Engineering, Kyushu University)
  • Received : 2017.09.20
  • Accepted : 2017.10.17
  • Published : 2018.03.30

Abstract

Barium titanate ($BaTiO_3$) nanoparticle is one of the most promising materials for future multi-layer ceramic capacitor and ferroelectric random access memory. It is well known that electrical property of nanoparticles depends on the atomistic structure. Although surface may possibly have an impact on the atomistic structure, reconstructed structure at the surface has not been widely investigated. In the present study, Ba-ion position near surface in a $BaTiO_3$ nanoparticle has been quantitatively characterized by scanning transmission electron microscopy. It was found that some Ba ions at the surface were greatly displaced in non-uniform directions.

Keywords

References

  1. Akdogan E K and Safari A J (2007) Thermodynamic theory of intrinsic finite size effects in $PbTiO_3$ nanocrystals. II. Dielectric and piezoelectric properties. J. Appl. Phys. 101, 064114. https://doi.org/10.1063/1.2713081
  2. Arlt G, Hennings D, and De With G (1985) Dielectric properties of finegrained barium titanate ceramics. J. Appl. Phys. 58, 1619. https://doi.org/10.1063/1.336051
  3. Bals S, Van Aert S, Van Tendeloo G, and A'vila-Brande D (2006) Statistical estimation of atomic positions from exit wave reconstruction with a precision in the picometer range. Phys. Rev. Lett. 96, 096106. https://doi.org/10.1103/PhysRevLett.96.096106
  4. Bansal V, Poddar P, Ahmad A, and Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc. 128, 11958. https://doi.org/10.1021/ja063011m
  5. Borisevich A Y, Eliseev E A, Morozovska A N, Cheng C J, Lin J Y, Chu Y H, Kan D, Takeuchi I, Nagarajan V, and Kalinin S V (2012) Atomic-scale evolution of modulated phases at the ferroelectric-antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nat. Commun. 3, 775. https://doi.org/10.1038/ncomms1778
  6. Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, and Eom C B (2004) Enhancement of ferroelectricity in strained $BaTiO_3$ thin films. Science 306, 1005. https://doi.org/10.1126/science.1103218
  7. Fong D D, Stephenson G B, Streiffer S K, Eastman J A, Auciello O, Fuoss P H, and Thompson C (2004) Ferroelectricity in ultrahin perovskite films. Science 304, 1650. https://doi.org/10.1126/science.1098252
  8. Frenkel A I, Frey M H, and Payne D A (1999) XAFS analysis of particle size effect on local structure in $BaTiO_3$. J. Synchrotron. Radiat. 6, 515. https://doi.org/10.1107/S0909049598018135
  9. Frey M H and Payne D A (1996) Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B 54, 3158. https://doi.org/10.1103/PhysRevB.54.3158
  10. Ghosez P and Rabe K M (2000) Microscopic model of ferroelectricity in stress-free $PbTiO_3$ ultrathin films. Appl. Phys. Lett. 76, 2767. https://doi.org/10.1063/1.126469
  11. Hoshina T, Kakemoto H, Tsurumi T, Wada S, and Yashima M (2006) Size and temperature induced phase transition behaviors of barium titanate nanoparticles. J. Appl. Phys. 99, 054311. https://doi.org/10.1063/1.2179971
  12. Hoshina T, Wada S, Kuroiwa Y, and Tsurumi T (2008) Composite structure and size effect of barium titanate nanoparticles. Appl. Phys. Lett. 93, 192914. https://doi.org/10.1063/1.3027067
  13. Huan Y, Wang X, Fang J, and Li L (2014) Grain size effect on piezoelectric and ferroelectric properties of $BaTiO_3$ ceramics. J. Euro. Ceram. Soc. 34, 1445. https://doi.org/10.1016/j.jeurceramsoc.2013.11.030
  14. Imanaka Y, Amada H, Kumasaka F, Takahashi N, Yamasaki T, Ohfuchi M, and Kaneta C (2013) Nanoparticulated dense and stress-free ceramic thick film for material integration. Adv. Eng. Mater. 15, 1129. https://doi.org/10.1002/adem.201300174
  15. Jia C L, Mi S B, Urban K, Vreoiu I, Alexe M, and Hesse D (2008) Atomicscale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57. https://doi.org/10.1038/nmat2080
  16. Jones L, Yang H, Pennycook T J, Marshall M S J, Aert S V, Browning N D, Castell M R, and Nellist P D (2015) Smart Align-a new tool for robust non-rigid registration of scanning microscope data. Adv. Struc. Chem. Imaging 1, 8. https://doi.org/10.1186/s40679-015-0008-4
  17. Li Y, Liao Z, Fang F, Wang X, Li L, and Zhu J (2014) Significant increase of Curie temperature in nano-scale $BaTiO_3$. Appl. Phys. Lett. 105, 182901. https://doi.org/10.1063/1.4901169
  18. Marquardt D W (1963) An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 11, 431. https://doi.org/10.1137/0111030
  19. Meyer B and Vanderbilt D (2001) Ab initio study of $BaTiO_3$ and $PbTiO_3$ surfaces in external electric fields. Phys. Rev. B 63, 205426. https://doi.org/10.1103/PhysRevB.63.205426
  20. Mimura K and Kato K (2014) Enhanced dielectric properties of $BaTiO_3$ nanocube assembled film in metal-insulator-metal capacitor structure. Appl. Phys. Exp. 7, 061501. https://doi.org/10.7567/APEX.7.061501
  21. Mitchell R H, Chakhmouradian A R, and Woodward P M (2000) Crystal chemistry of perovskite-type compounds in the tausonite-loparite series, $(Sr_{1-2x}Na_xLa_x)TiO_3$. Phys. Chem. Minerals 27, 583. https://doi.org/10.1007/s002690000103
  22. Pennycook S J and Jesson D E (1990) High-resolution incoherent imaging of crystals. Phys. Rev. Lett. 64, 938. https://doi.org/10.1103/PhysRevLett.64.938
  23. Petkov V, Gateshki M, Niederberger M, and Ren Y (2006) Atomic-scale structure of nanocrystalline $Ba_xSr_{1-x}TiO_3$ (x = 1, 0.5, 0) by X-ray diffraction and the atomic pair distribution function technique. Chem. Mater. 18, 814. https://doi.org/10.1021/cm052145g
  24. Polking M, Han M G, Yourdkhani A, Petkov V, Kisielowski C F, Volkov V V, Zhu Y, Caruntu G, Alivisatos A P, and Ramesh R (2012) Ferroelectric order in individual nanometre-scale crystals. Nat. Mater. 11, 703.
  25. Rose H (1994) Correction of aberrations, a promising means for improving the spatial and energy resolution of energy-filtering electron microscopes. Ultramicroscopy 56, 11. https://doi.org/10.1016/0304-3991(94)90142-2
  26. Smith M B, Page K, Siegrist T, Redmond P L, Walter E C, Seshadri R, Brus L E, and Steigerwald M L (2008) Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale $BaTiO_3$. J. Am. Chem. Soc. 130, 6955. https://doi.org/10.1021/ja0758436
  27. Spanier J E, Kolpak A M, and Urban J J (2006) Ferroelectric phase transition in individual single-crystalline $BaTiO_3$ nanowires. Nano Lett. 6, 735. https://doi.org/10.1021/nl052538e
  28. Tsurumi T (2007) Non-linear piezoelectric and dielectric behaviors in perovskite ferroelectrics. J. Ceram. Soc. Jpn. 115, 17. https://doi.org/10.2109/jcersj.115.17
  29. Tsurumi T, Sekine T, Kakemoto H, Hoshina T, Nam S M, Yasuno H, and Wada S (2006) Evaluation and statistical analysis of dielectric permittivity of $BaTiO_3$ powders. J. Am. Ceram. Soc. 89, 1337. https://doi.org/10.1111/j.1551-2916.2005.00905.x
  30. Urban J J, Spanier J E, Ouyang L, Yun W S, and Park H (2003) Singlecrystalline barium titanate nanowires. Adv. Mater. 15, 423. https://doi.org/10.1002/adma.200390098
  31. Varghese J, Whatmore R W, and Holmes J D (2013) Ferroelectric nanoparticles, wires and tubes: synthesis, characterization and applications. J. Mater. Chem. C 1, 2618. https://doi.org/10.1039/c3tc00597f
  32. Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schlep€utz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W, and Ramesh R (2016) Observation of polar vortices in oxide superlattices. Nature (London) 530, 198. https://doi.org/10.1038/nature16463
  33. Yamamoto T, Niori H, and Moriwake H (2000) Particle-size dependence of crystal structure of $BaTiO_3$ powder. Jpn. J. Appl. Phys. 39, 5683. https://doi.org/10.1143/JJAP.39.5683
  34. Yankovich A B, Berkels B, Dahmen W, Binev P, Sanchez S I, Bradley S A, Li A, Szlufarska I, and Voyles P M (2014) Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat. Commun. 5, 4155. https://doi.org/10.1038/ncomms5155
  35. Zhao Z, Buscaglia V, Viviani M, Buscaglia M T, Mitoseriu L, Testino A, Nygren M, Johnsson M, and Nanni P (2004) Grain-size effects on the ferroelectric behavior of dense nanocrystalline $BaTiO_3$ ceramics. Phys. Rev. B 70, 024107. https://doi.org/10.1103/PhysRevB.70.024107