DOI QR코드

DOI QR Code

Investigation of GaN Negative Capacitance Field-Effect Transistor Using P(VDF-TrFE) Organic/Ferroelectric Material

P(VDF-TrFE) 유기물 강유전체를 활용한 질화갈륨 네거티브 커패시턴스 전계효과 트랜지스터

  • Han, Sang-Woo (School of Electronic and Electrical Engineering, Hongik University) ;
  • Cha, Ho-Young (School of Electronic and Electrical Engineering, Hongik University)
  • Received : 2018.03.09
  • Accepted : 2018.03.16
  • Published : 2018.03.31

Abstract

In this work, we developed P(VDF-TrFE) organic/ferroelectric material based metal-ferroelectric-metal (MFM) capacitors in order to improve the switching characteristics of gallium nitride (GaN) heterojunction field-effect transistors (HFET). The 27 nm-thick P(VDF-TrFE) MFM capacitors exhibited about 60 ~ 96 pF capacitance with a polarization density of $6{\mu}C/cm^2$ at 4 MV/cm. When the MFM capacitor was connected in series with the gate electrode of GaN HFET, the subthreshold slope decreased from 104 to 82 mV/dec.

본 논문에서는 P(VDF-TrFE)유기물 강유전체 기반 metal-ferroelectric-metal (MFM) capacitor 와 차세대 반도체 물질인 질화갈륨 반도체를 활용한 네거티브 커패시턴스 전계효과 트랜지스터를 제작 및 분석 하였다. 27 nm의 두께의 P(VDF-TrFE) MFM 커패시터의 분극지수는 4 MV/cm에서 $6{\mu}C/cm^2$ 값을 나타내었으며 약 65 ~ 95 pF의 커패시턴스 값을 나타내었다. 강유전체의 커패시턴스와 전계효과 트랜지스터의 커패시턴스 매칭을 분석하기 위해 제작된 P(VDF-TrFE) MFM 커패시터는 GaN 전계효과 트랜지스터의 게이트 전극에 집적화 되었으며 집적화되기 전 104 mV/dec 의 문턱전압 이하 기울기에서 82 mV/dec 값으로 개선된 효과를 보였다.

Keywords

References

  1. K. Rupp, "40 Years of Microprocessor Trend Data," https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
  2. A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as energy-efficient electronic switches," Nature, vol. 479, no. 7373, pp. 329-337, 2011. DOI:10.1038/nature10679
  3. C. Auth et al., "A 10nm High Performance and Low-Power CMOS Technology Featuring 3rd Generation FinFET Transistors, Self-Aligned Quad Patterning, Contact over Active Gate and Cobalt Local Interconnects," Proceeding of the 2017 IEEE International Electron Devices Meeting, pp. 29.1.1-29.1.4, 2017. DOI:10.1109/IEDM.2017.8268472
  4. U. Abelein et al., "Improved Reliability by Reduction of Hot-Electron Damage in the Vertical Impact-Ionization MOSFET (I-MOS)," IEEE Electron Device Lett., vol. 28, no. 1, pp. 65-67, 2007. DOI:10.1109/LED.2006.887629
  5. J. Jo et al., "Negative Capacitance in Organic/Ferroelectric Capacitor to Implement Steep Switching MOS Devices," Nano Lett., Vol. 15, no. 7, pp. 4553-4556, 2015. DOI:10.1021/acs.nanolett.5b01130
  6. A. I. Khan, et al., "Negative capacitance in a ferroelectric capacitor," Nature Materials, vol. 14, pp. 182-186, 2015. DOI:10.1038/nmat4148