DOI QR코드

DOI QR Code

Four New Records of Ascomycete Species from Korea

  • Nguyen, Thuong T.T. (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Pangging, Monmi (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Lee, Seo Hee (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Lee, Hyang Burm (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University)
  • Received : 2018.07.03
  • Accepted : 2018.10.28
  • Published : 2018.12.31

Abstract

While evaluating fungal diversity in freshwater, grasshopper feces, and soil collected at Dokdo Island in Korea, four fungal strains designated CNUFC-DDS14-1, CNUFC-GHD05-1, CNUFC-DDS47-1, and CNUFC-NDR5-2 were isolated. Based on combination studies using phylogenies and morphological characteristics, the isolates were confirmed as Ascodesmis sphaerospora, Chaetomella raphigera, Gibellulopsis nigrescens, and Myrmecridium schulzeri, respectively. This is the first records of these four species from Korea.

Keywords

References

  1. Ajello L. Natural history of the dermatophytes and related fungi. Mycopathol Mycol Appl. 1974;53:93-110. https://doi.org/10.1007/BF02127200
  2. Angel K, Wicklow DT. Relationships between coprophilous fungi and fecal substrates in a Colorado grassland. Mycologia. 1975;67:63-74. https://doi.org/10.1080/00275514.1975.12019722
  3. Kuthubutheen AJ, Webster J. Water availability and the coprophilous fungus succession. Trans Br Mycol Soc. 1986;86:63-76. https://doi.org/10.1016/S0007-1536(86)80118-8
  4. Safar HM, Cooke RC. Explotation of faecal resource units by coprophilous Ascomycotina. Trans Br Mycol Soc. 1988;90:593-599. https://doi.org/10.1016/S0007-1536(88)80064-0
  5. Safar HM, Cooke RC. Interactions between bacteria and coprophilous Ascomycotina and Coprinus species on agar and in copromes. Trans Br Mycol Soc. 1988;91:73-80. https://doi.org/10.1016/S0007-1536(88)80008-1
  6. Ryu SH, Jang KH, Choi EH. Biodiversity of marine invertebrates on rocky shores of Dokdo. Korea Zool Stud. 2012;51:710-726.
  7. You YH, Yoon H, Kim H, et al. Plant growth-promoting activity and genetic diversity of endophytic fungi isolated from native plants in Dokdo Islands for restoration of a coastal ecosystem. Kor J Life Sci. 2013;23:95-101. https://doi.org/10.5352/JLS.2013.23.1.95
  8. Lee HW, Nguyen TT, Mun HY, et al. Confirmation of two undescribed fungal species from Dokdo of Korea based on current classification system using multi loci. Mycobiology. 2015;43:392-401. https://doi.org/10.5941/MYCO.2015.43.4.392
  9. Ariyawansa HA, Hyde KD, Jayasiri SC, et al. Fungal Diversity Notes 111-252: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2015;75:27-274. https://doi.org/10.1007/s13225-015-0346-5
  10. Nguyen TT, Lee SH, Bae S, et al. Characterization of two new records of Zygomycete species belonging to undiscovered taxa in Korea. Mycobiology. 2016;44:29-37. https://doi.org/10.5941/MYCO.2016.44.1.29
  11. You YH, Park JM, Seo YG, et al. Distribution, characterization, and diversity of the endophytic fungal communities on Korean seacoasts showing contrasting geographic conditions. Mycobiology. 2017;45:150-159. https://doi.org/10.5941/MYCO.2017.45.3.150
  12. Jones EBG, Hyde KD, Pang KL. Freshwater Fungi and fungal-like organisms. Marine and Freshwater Botany. Berlin-Boston: Walter de Gruyter; 2014.
  13. Bucher VVC, Pointing SB, Hyde KD, et al. Production of wood decay enzymes, loss of mass, and lignin solubilization in wood by diverse tropical freshwater fungi. Microb Ecol. 2004;48:331-377. https://doi.org/10.1007/s00248-003-0132-x
  14. Angel K, Wicklow DT. Decomposition of rabbit faeces: an indication of the significance of the coprophilous microflora in energy flow schemes. J Ecol. 1974;62:429-437. https://doi.org/10.2307/2258989
  15. Thilagam L, Nayak BK, Nanda A. Studies on the diversity of coprophilous microfungi from hybrid cow dung samples. Int J Pharm Tech Res. 2015;8:135-138.
  16. Mead LJ, Khachatourians GG, Jones GA. Microbial ecology of the gut in laboratory stocks of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae). Appl Environ Microbiol. 1988;54:1174-1181.
  17. Li GJ, Hyde KD, Zhao RL, et al. Fungal diversity notes 253-366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016;78:1-237. https://doi.org/10.1007/s13225-016-0366-9
  18. Nguyen TT, Paul NC, Lee HB. Characterization of Paecilomyces variotii and Talaromyces amestolkiae in Korea based on the morphological characteristics and multigene phylogenetic analyses. Mycobiology. 2016;44:248-259. https://doi.org/10.5941/MYCO.2016.44.4.248
  19. Nguyen TTT, Choi Y-J, Lee HB. Three unrecorded fungal species from fecal and freshwater samples in Korea. Kor J Mycol. 2017;45:304-318.
  20. Tibpromma S, Hyde KD, Jeewon R, et al. Fungal diversity notes 491-602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2017;83:1-261. https://doi.org/10.1007/s13225-017-0378-0
  21. Nguyen TT, Choi YJ, Lee HB. Isolation and characterization of three unrecorded Zygomycete fungi in Korea: Cunninghamella bertholletiae, Cunninghamella echinulata, and Cunninghamella elegans. Mycobiology. 2017;45:318-326. https://doi.org/10.5941/MYCO.2017.45.4.318
  22. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York, NY: Academic Press, Inc.; 1990. p. 315-322.
  23. Lee J, Lee S, Young JPW. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol. 2008;65:339-349. https://doi.org/10.1111/j.1574-6941.2008.00531.x
  24. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172:4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  25. Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876-4882. https://doi.org/10.1093/nar/25.24.4876
  26. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95-98.
  27. Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-2729. https://doi.org/10.1093/molbev/mst197
  28. Van Tieghem P. Sur le developpement du fruit des Ascodesmis, genre nouveau de l’ordre des Ascomycetes. Bull Soc Bot France. 1876;23:271-279. https://doi.org/10.1080/00378941.1876.10825668
  29. Obrist W. The genus Ascodesmis. Can J Bot. 1961; 39:943-945. https://doi.org/10.1139/b61-079
  30. Landvik S, Egger KN, Schumacher T. Towards a subordinal of the Pezizales (Ascomycota): phylogenetic analyses of SSU rDNA sequences. Nord J Bot. 1997;17:403-418. https://doi.org/10.1111/j.1756-1051.1997.tb00337.x
  31. Hansen K, Perry BA, Pfister DH. Phylogenetic origins of two cleistothecial fungi, Orbicula parietina and Lasiobolidium orbiculoides, within the operculate discomycetes. Mycologia. 2005;97:1023-1033. https://doi.org/10.1080/15572536.2006.11832752
  32. Van Brummelen J. The genus Ascodesmis (Pezizales, Ascomycetes). Persoonia. 1981;11:333-358.
  33. Kristiansen R. The genus Ascodesmis (Pezizales) in Norway. Ascomycete. Org. 2011;2:65-69.
  34. Jeamjitt O, Manoch L, Visarathanonth N, et al. Coprophilous ascomycetes in Thailand. Mycotaxon. 2007;100:115-136.
  35. Hein SM, Gloer JB, Koster B, et al. Arugosin F: a new antifungal metabolite from the coprophilous fungus Ascodesmis sphaerospora. J Nat Prod. 1998;61:1566-1567. https://doi.org/10.1021/np9801918
  36. Fuckel L. Symboiae Mycologicae. Nassau Ver Naturk. 1869;402:23-24.
  37. Stolk AC. The genus Chaetomella Fuckel. Trans Br Mycol Soc. 1963;46:409-425. https://doi.org/10.1016/S0007-1536(63)80035-2
  38. Singh HB, Johri JK, Singh M, et al. A new leaf spot disease of Cuphea spp. caused by Chaetomella raphigera. Bull OEPP. 1999;29:213-214. https://doi.org/10.1111/j.1365-2338.1999.tb00822.x
  39. Rossman AY, Aime MC, Farr DF, et al. The coelomycetous genera Chaetomella and Pilidium represent a newly discovered lineage of inoperculate discomycetes. Mycol Progress. 2004;3:275-290. https://doi.org/10.1007/s11557-006-0098-4
  40. Zhang M, Li JJ, Wu HY, et al. First report of Chaetomella raphigera causing leaf spot on Rosa chinensis in China. Plant Dis. 2014;98:569.
  41. Gajbhiye M, Sathe S, Shinde V, et al. Morphological and molecular characterization of pomegranate fruit rot pathogen, Chaetomella raphigera, and its virulence factors. Indian J Microbiol. 2016;56:99-102. https://doi.org/10.1007/s12088-015-0554-4
  42. Yoneda A, Kuo HWD, Ishihara M, et al. Glycosylation variants of a b-glucosidase secreted by a Taiwanese fungus, Chaetomella raphigera, exhibit variant specific catalytic and biochemical properties. PloS ONE. 2014;9:e106306. DOI:10. 1371/journal.pone.0106306 https://doi.org/10.1371/journal.pone.0106306
  43. Gangadevi V, Muthumary J. A novel endophytic Taxol-producing fungus Chaetomella raphigera isolated from a medicinal plant, Terminalia arjuna. Appl Biochem Biotechnol. 2009;158:675-684. https://doi.org/10.1007/s12010-009-8532-0
  44. Batista AC, Maia HDS. Uma nova doenca fungica de peixe ornamental. Anais Soc Biol Pernambuco. 1959;16:153-159.
  45. Zare R, Gams W, Starink-Willemse M, et al. Gibellulopsis, a suitable genus for Verticillium nigrescens and Musicillium, a new genus for V. theobromae. Nova Hedw. 2007;85:463-489. https://doi.org/10.1127/0029-5035/2007/0085-0463
  46. Seifert K, Morgan-Jones G, Gams W, et al. The genera of hyphomycetes. CBS Biodiversity Series. Utrecht (Netherlands): CBS-KNAW Fungal Biodiversity Centre; 2011. p. 997.
  47. Hirooka Y, Kawaradani M, Sato T. Description of Gibellulopsis chrysanthemi sp. nov. from leaves of garland chrysanthemum. Mycol Progress. 2014;13:13-19. https://doi.org/10.1007/s11557-012-0887-x
  48. Wu YM, Xu JJ, Wang HF, et al. Geosmithia tibetensis sp. nov. and new Gibellulopsis and Scopulariopsis records from Qinghai-Tibet. Mycotaxon. 2013;125:59-64. https://doi.org/10.5248/125.59
  49. Zhou Y, Zhao ZQ, Guo QY, et al. First report of wilt of sugar beet caused by Gibellulopsis nigrescens in the Xinjiang region of China. Plant Dis. 2017; 101:1318.
  50. Arzanlou M, Groenewald JZ, Gams W, et al. Phylogenetic and morphotaxonomic revision of Ramichloridium and allied genera. Stud Mycol. 2007;58:57-93. https://doi.org/10.3114/sim.2007.58.03
  51. Crous PW, Summerell BA, Shivas RG, et al. Fungal planet description sheets: 92-106. Persoonia. 2011;27:130-162. https://doi.org/10.3767/003158511X617561
  52. Jiea CY, Zhoua QX, Zhao WS, et al. A new Myrmecridium species from Guizhou, China. Mycotaxon. 2013;124:1-8.
  53. Peintner U, Knapp M, Fleischer V, et al. Myrmecridium hiemale sp. nov. from snow-covered alpine soil is the first eurypsychrophile in this genus of anamorphic fungi. Int J Syst Evol Microbiol. 2016;66:2592-2598. https://doi.org/10.1099/ijsem.0.001090
  54. Zhang XY, Bao J, Wang GH, et al. Diversity and antimicrobial activity of culturable fungi isolated from six species of the South China Sea gorgonians. Microb Ecol. 2012;64:617-627. https://doi.org/10.1007/s00248-012-0050-x

Cited by

  1. New plectosphaerellaceous species from Dutch garden soil vol.18, pp.9, 2018, https://doi.org/10.1007/s11557-019-01511-4