DOI QR코드

DOI QR Code

Study on the Improvement of the Fastness of Dyeing for Environmentally Synthetic Suede Using Silica Particles

실리카 입자를 활용한 친환경 인조스웨이드의 견뢰도 향상에 관한 연구

  • Lee, Hye Mi (Korea Dyeing and Finishing Technology Institute(DYETEC)) ;
  • Kim, Ah Rong (Korea Dyeing and Finishing Technology Institute(DYETEC)) ;
  • Kim, Dae Geun (Korea Dyeing and Finishing Technology Institute(DYETEC))
  • 이혜미 (다이텍연구원 부산분원) ;
  • 김아롱 (다이텍연구원 부산분원) ;
  • 김대근 (다이텍연구원 부산분원)
  • Received : 2018.11.14
  • Accepted : 2018.12.12
  • Published : 2018.12.27

Abstract

In recent years, research on the development of eco-friendly synthetic suede based on water-dispersed polyurethane resin and non-fluorine water repellent has been conducted. Synthetic suede has a problem that the fastness to dyeing is greatly lowered after the water-repellent processing at a high temperature of $160^{\circ}C$ because the polyester is dyed with a disperse dye. Therefore, in this study, silica was added to water-dispersed polyurethane resin to improve dye fastness. To distribute the $PUD-SiO_2$ mixture evenly in the water-dispersed polyurethane resin, sufficient stirring was done for a period of time. When the $PUD-SiO_2$ mixture(PUD 1-5%) is applied to the substrate, it is confirmed through SEM that the mixture is uniformly applied without particle condensation. The results showed that silica with a diameter of 4~12nm and BET of $200{\sim}380g/m^2$ had the ability to improve dispersibility and fastness.

Keywords

OSGGBT_2018_v30n4_275_f0001.png 이미지

Scheme 1. Stirring conditions of preparing stock solution.

OSGGBT_2018_v30n4_275_f0002.png 이미지

Figure 1. Variance stability(∆BS) graph on concentration of PUD-SiO2(AE 200) 1~5%.

OSGGBT_2018_v30n4_275_f0003.png 이미지

Figure 2. Variance stability(ΔBS) graph on concentration of PUD-SiO2(AE 380) 1~5%.

OSGGBT_2018_v30n4_275_f0004.png 이미지

Figure 3. Variance stability(ΔBS) graph on concentration of PUD-SiO2(OK 412) 1~5%.

OSGGBT_2018_v30n4_275_f0005.png 이미지

Figure 4. FT-IR spectra of PUD-SiO2; (a) PUD, (b) PUD+SiO2(AE200), (c) PUD+SiO2(AE380), (d) PUD+SiO2(OK412).

OSGGBT_2018_v30n4_275_f0006.png 이미지

Figure 5. SEM image of impregnated PET synthetic suede by PUD-SiO2 concentration; (a) 1% AE200, (b) 3% AE200, (c) 5% AE200, (d) 1% AE380, (e) 3% AE380, (f) 5% AE380, (g) 1% OK412, (h) 3% OK412, (i) 5% OK412.

OSGGBT_2018_v30n4_275_f0007.png 이미지

Figure 6. Effect of SiO2 contents on the tear strength.

OSGGBT_2018_v30n4_275_f0008.png 이미지

Figure 7. Effect of SiO2 contents on the tensile strength.

OSGGBT_2018_v30n4_275_f0009.png 이미지

Figure 8. Effect of SiO2 contents on the elongation.

OSGGBT_2018_v30n4_275_f0010.png 이미지

Figure 9. Schematic drawing on the adsorption of dyeing over the surface of PUD-SiO2.

Table 1. Properties of silica(SiO2)

OSGGBT_2018_v30n4_275_t0001.png 이미지

Table 2. Specimen of PET tricot fabric

OSGGBT_2018_v30n4_275_t0002.png 이미지

Table 3. Specimen of PET tricot fabric

OSGGBT_2018_v30n4_275_t0003.png 이미지

Table 4. Colorimetric result of fastness by each type and concentration of SiO2

OSGGBT_2018_v30n4_275_t0004.png 이미지

Table 5. Water repellency by each type and concentration of SiO2

OSGGBT_2018_v30n4_275_t0005.png 이미지

References

  1. D. Dieterich, Aqueous Emulsions, Dispersions and Solution of Polyurethanes; Synthesis and Properties, Progress in Organic Coatings, 9(3), 281(1981). https://doi.org/10.1016/0033-0655(81)80002-7
  2. C. Hepburn, "Polyurethane Elastomer", 2nd Ed., Elsevier, London, p.17, 1982.
  3. S. L. Cooper and A. V. Tobosky, Properties of Linear Elastomer Polyurethane, J. of Applied Polymer Science, 10(12), 1837(1966). https://doi.org/10.1002/app.1966.070101204
  4. J. S. Yoo and H. J. Chun, Application of Polyurethane Adhesives, Polymer Science Technology, 10(5), 578 (1999).
  5. E. K. Choe, J. S. Ra, Y. D. Cho, K. B. Song, S. Y. Lee, and G. S. Seok, Chemical Structural Approach to Understand Global Prohibited on Perfluorinated Compounds and their Uses, Textile Coloration and Finishing, 23(3), 134(2016).
  6. M. M. Schultz, D. F. Barofsky, and J. A. Field, Fluorinated Alkyl Surfactants, Environmental Engineering Science, 20(5), 487(2004). https://doi.org/10.1089/109287503768335959
  7. J. S. Yoo and H. J. Chun, Application of Polyurethane Adhesives, Polym. Sci. Technol., 10(5), 578(1999).
  8. D. Dieterich, Aqueous Emulsions, Dispersions and Solution of Polyurethanes; Synthesis and Properties I, Angew. Makromol. Chem., 98, 281(1981).
  9. S. L. Cooper and A. V. Tobosky, Properties of Linear Elastomer Polyurethane, J. Appl. Polym. Sci., 10, 1837 (1966). https://doi.org/10.1002/app.1966.070101204
  10. S. Yabushita and Y. Yamamoto, A Study of the Wetfastness of Disperse Dyes, Dyeing Ind. Jpn., 41, 5187 (1997).
  11. T. Kashiwagi, J. W. Gilman, K. M. Butler, R. H. Harris, J. R. Shields, and A. Asano, Flame Retardant Mechanism of Silica Fel/silica, Fire Mater, 24, 277(2000). https://doi.org/10.1002/1099-1018(200011/12)24:6<277::AID-FAM746>3.0.CO;2-A
  12. Y. M. Ahn, J. Y. Yoon, C. W. Baek, and Y. K. Kim, Chemical Mechanical Polishing by Colloidal Silicabased Slurry for Micro-scratch Reduction, Wear, 257, 785(2004). https://doi.org/10.1016/j.wear.2004.03.020
  13. H. Barthel, M. Dreyer, T. G. Gaudig, V. Litvinov, and E. Nikitina, Fumed Silica-rheological Additive for Adhesives, Resins and Paints, Macromol. Symp., 187, 573(2002). https://doi.org/10.1002/1521-3900(200209)187:1<573::AID-MASY573>3.0.CO;2-1
  14. A. Krysztafkiewicz, S. Binkowski, and T. Jesionowski, Absorption of Dyes on a Silica Surface, Applied Surface Science, 199(1), 31(2002). https://doi.org/10.1016/S0169-4332(02)00248-9
  15. C. H. Yang, F. J. Liu, Y. P. Liu, and W. T. Liao, Hybrids of Colloidal Silica and Waterborne Polyurethane, J. Colloid Interface Sci., 302, 123(2006). https://doi.org/10.1016/j.jcis.2006.06.001
  16. S. M. Lai and S. D. Liu, Properties and Preparation of Thermoplastic Polyurethane/Silica Hybrids Using a Modified Sol-Gel Process, Polym. Eng. Sci., 47(2), 77 (2007). https://doi.org/10.1002/pen.20669