DOI QR코드

DOI QR Code

반순환여과시스템에서 오존 유래 잔류산화물 농도에 따른 넙치(Paralichthys olivaceus)의 성장과 생리학적 변화

Growth Performance and Physiological Changes of Olive Flounder Paralichthys olivaceus by Concentration of Ozone Produced Oxidants in Semi-RAS

  • 정상명 (강원도립대학교 해양양식식품과) ;
  • 박우근 (강원도립대학교 해양양식식품과) ;
  • 박정환 (부경대학교 해양바이오신소재학과) ;
  • 김재원 (강원도립대학교 해양양식식품과) ;
  • 김병기 (강원도립대학교 해양양식식품과)
  • Jung, Sangmyung (Department of Aquaculture and Seafood, Gangwon State University) ;
  • Park, Woogeun (Department of Aquaculture and Seafood, Gangwon State University) ;
  • Park, Jeonghwan (Department of Marine Bio-Materials and Aquaculture, Pukyong National University) ;
  • Kim, Jaewon (Department of Aquaculture and Seafood, Gangwon State University) ;
  • Kim, Pyong-kih (Department of Aquaculture and Seafood, Gangwon State University)
  • 투고 : 2018.11.21
  • 심사 : 2018.12.14
  • 발행 : 2018.12.31

초록

This study investigated the effects of ozone-produced oxidants (OPO) on the growth, hematology, and histology of olive flounder Paralichthys olivaceus (average weight 500 g), raised in an ozonated semi-recirculating aquaculture system. The system was ozonated to maintained OPO concentrations of 0.004 (Control), 0.014 (OPO15), and 0.025 (OPO25) mg $Cl_2/L$ in culture tanksfor 26 days. The specific growth rate, feed conversion ratio, and survival rate did not significantly differ among the groups (P>0.05), while the daily feeding rate decreased OPO-dose-dependently (P<0.05). OPO appeared to affect the gill, hepatopancreas, and kidney tissues of fish from ozonated tanks. Hematologically, OPO affected some blood indices. The levels of chloride, glucose, glutamic oxaloacetic transaminase, and glutamic pyruvic transaminase were significantly increased in the ozonated groups, while the total cholesterol and cortisol decreased dose-dependently. These results imply that long-term exposure of olive flounder to an OPO concentration ${\geq}0.014mg\;Cl_2/L$ might result in damage to the gill, hepatopancreas, and kidney tissues and cause physiological stress, albeit with no apparent short-term effects on growth or survival.

키워드

KSSHBC_2018_v51n6_688_f0001.png 이미지

Fig. 1. Experimental semi-RAS system.

KSSHBC_2018_v51n6_688_f0002.png 이미지

Fig. 2. Histological changes of the gill of olive flounder Paralichthys olivaceus depending on the ozone injection rates. A: Control. Showing the gill lamellae (Gl). B: OPO15 group. H-E section showing the clubbed type of gill lamellae. C: OPO25 group. Note the hypertrophy and the epithelial cell lifting of gill lamellae. OPO, Ozone produced oxidants.

KSSHBC_2018_v51n6_688_f0003.png 이미지

Fig. 3. Histological changes of the liver of olive flounder Paralichthys olivaceus depending on the ozone injection rates. A: Control. Note the hepatic cell (Hc), pancreas (P) and bile duct (Bd). B: OPO15 group. a little degeneration of hepatic cells and zymogen granules. C: OPO25 group. Note the degeneration of hepatic cells and the abnormal type of pancreas. OPO, Ozone produced oxidants.

KSSHBC_2018_v51n6_688_f0004.png 이미지

Fig. 4. Histological changes of the kidney of olive flounder Paralichthys olivaceus depending on the ozone injection rates. A: Control. Note normal glomerulus (Gl) and renal tubule (Rt). B: OPO15 group. Note a little activated melano-macrophagocytes and the hypertrophied epithelia of renal tubules. D: OPO25 group. Section showing the deformation and degeneration of glomerulus and renal tubule. Fig. 5 Blood analysis of olive flounder Paralichthys olivaceus reared at different OPO concentration. OPO, Ozone produced oxidants.

KSSHBC_2018_v51n6_688_f0005.png 이미지

Fig. 5. Blood analysis of olive founder Paralichthys olivaceus reared at different OPO concentration. OPO, Ozone produced oxidants;GOT, Glutamic oxaloacetic transaminase; GPT, Glutamic pyruvic transaminase.

Table 1. Water environment for the experiment

KSSHBC_2018_v51n6_688_t0001.png 이미지

Table 2. Growth performance of olive founder Paralichthys olivaceus reared with 3 different OPO concentrations for 26 days

KSSHBC_2018_v51n6_688_t0002.png 이미지

Table 3. The OPO concentration-dependent correlation of olive founder Paralichthys olivaceus blood indicators

KSSHBC_2018_v51n6_688_t0003.png 이미지

참고문헌

  1. Buchan KAH, Martin-Robichaud DJ and Benfey TJ. 2005. Measurement of dissolved ozone in sea water A comparison of methods. Aquac Eng 33, 225-231. https://doi.org/10.1016/j.aquaeng.2005.02.002.
  2. Barton BA and Iwama GK. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1, 3-26. https://doi.org/10.1016/0959-8030(91)90019-G.
  3. Cobcroft JM and Battaglene SC. 2013. Ultraviolet irradiation is an effective alternative to ozonation as a sea water treatment to prevent Kudoa neurophila (Myxozoa: Myxosporea) infection of striped trumpeter, Latris lineata (Forster). J Fish Dis 36, 57-65. http://dx.doi.org/10.1111/j.1365-2761.2012.01413.x.
  4. Davidson J, Good C, Welsh CF and Summerfelt ST. 2011. The effects of ozone and water exchange rates on water quality and rainbow trout Oncorhynchus mykiss performance in replicated water recirculating systems. Aquac Eng 44, 80-96. https://doi.org/10.1016/j.aquaeng.2011.04.001.
  5. Fivelstad S, Waagbo R, Zeitz SF, Hosfeld ACD, Olsen AB and Stefansson SO. 2003. A major water quality problem in smolt farms: combined effects of carbon dioxide, reduced pH and aluminium on Atlantic salmon (Salmo salar L.) smolts: physiology and growth. Aquaculture 215, 339-357. https://doi.org/10.1016/S0044-8486(02)00197-7.
  6. Good C, Davidson J, Welsh C, Snekvik KR and Summerfelt ST. 2011. The effects of ozonation on performance, health and welfare of rainbow trout Oncorhynchus mykiss in lowexchange water recirculation aquaculture systems. Aquac Eng 44, 97-102. Http://doi:10.1016/j.aquaeng.2011.04.003.
  7. Haag W and Hoigne J. 1984. Kinetics and products of the reactions of ozone with various forms of chlorine and bromide in water. Ozone Sci Eng 6, 103-114. http://dx.doi.org/10.1080/0191951848551009.
  8. Jeon JK, Kim PK, Myoung JG and Kim JM. 2000. Changes of serum cortisol concentration and stress responses in coho salmon (Oncorhynchus kisutch) to netting. J Kor Fish Soc 33, 115-118.
  9. Jensen MA, Ritar AJ, Burke CM and Ward LR. 2011. Seawater ozonation and formalin disinfection for the larval culture of eastern rock lobster, Jasus (Sagmariasus) verreauxi, phyllosoma. Aquaculture 318, 213-222. https://doi.org/10.1016/j.aquaculture.2011.05.001.
  10. Kim HY, Oh MJ and Jung SJ. 1999. Acute Toxicity of Ozone on Survival and Physiological Conditions of Olive Flounder, Paralichthys olivaceus. J Fish Pathol 12, 32-41.
  11. Kim JO and Kang SK. 2011. Economic Impact Effect Analysis of Flounder Aquaculture Industry in Jeju. J Fish Bus Adm 42, 85-96.
  12. Kim PK, Kim Y and Jeon JK. 2005. Use of Dietary Salt to Rainbow Trout (Oncorhynchus mykiss) for Increasing Seawater Adaptability. J Aquaculture 18, 69-75.
  13. Kim SS, Kim KW, Kim KD, Lee BJ, Han HS, Kim JW Bai SC and Lee KJ. 2014. Optimum Feeding Rate for Sub-adult Olive Flounder (384 g) Paralichthys olivaceus Fed Practical Extruded Pellets at Optimum Water Temperatures (20-$24.5^{\circ}C$). Korean J Fish Aquat Sci 47, 582-587. http://dx.doi.org/10.5657/KFAS.2014.0582.
  14. Karnaky KJ. 1986. Structure and function of the chloride cell of Fundulus heteroclitus and other teleosts. Integr Comp Biol 26, 209-224. https://doi.org/10.1093/icb/26.1.209.
  15. KOSIS (Korean Statistical Information Service). 2018. Research on fish aquculture trends. Retrieved from http://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1EZ0008&vw_cd=MT_ZTITLE&list_id=F38&seqNo=&lang_mode=ko&language=kor&obj_var_id=&itm_id=&conn_path=MT_ZTITLE on Nov 20, 2018.
  16. Krumins V, Ebeling JM and Wheaton FW. 2001. Ozone's effects on power-law particle size distribution in recirculating aquaculture systems. Aquac Eng 25, 13-24. https://doi.org/10.1016/S0144-8609(01)00064-4.
  17. Lang T, Peters G, Hoffmann R and Meyer E. 1987. Experimental investigations on the toxicity of ammonia-effects on ventilation frequency, growth, epidermal mucous cells, and gill structure of rainbow-trout Salmo gairdneri. Dis Aquat Org 3, 159-165. https://doi.org/10.3354/dao003159
  18. Lee YC, Chang YJ and Lee BK. 1997. Osmoregulation capability of juvenile grey mullets (Mugil cephalus) with the different salinities. Korean J Fish Aquat Sci 30, 216-224.
  19. Liltved H, Vogelsang C, Modahl I and Dannevig BH. 2006. High resistance of fish pathogenic viruses to UV irradiation and ozonated seawater. Aquac Eng 34, 72-82. https://doi.org/10.1016/j.aquaeng.2005.05.002.
  20. Li X, Przybyla C, Triplet S, Liu Y and Blancheton JP. 2015. Long-term effects of moderate elevation of oxidation-reduction potential on European seabass (Dicentrarchus labrax) in recirculating aquaculture systems. Aquac Eng 64, 15-19. https://doi.org/10.1016/j.aquaeng.2014.11.006.
  21. Mommsen TP, Vijayan MM and Moon TW. 1999. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish 9, 211-268. https://doi.org/10.1023/A:1008924418720.
  22. NFRDI (National Institute of Fisheries Science). 2016. Standard manual of Olive Flounder culture. Retrieved from http://www.nifs.go.kr/adms/ebook/flatfish/index.html#page=50 on Sep 7, 2018.
  23. Oh MJ, HY Kim and HS Cho. 1999. Disinfection of culture water supply by ozonization : 1. Susceptibility of some fishpathogenic bacteria isolated from culture marine fish. J Fish Pathol 12, 32-41.
  24. Paller MH and RC Heidinger. 1980. Machanisms of delayed ozone toxicity to bluegill Lepomis macrochirus rafinesque. Environ. Pollut 22, 226-239. https://doi.org/10.1016/0143-1471(80)90017-3.
  25. Park J, Kim Y, Kim PK and Daniels HV. 2011. Effects of two different ozone doses on seawater recirculating systems for black sea bream Acanthopagrus schlegeli (Bleeker): removal of solids and bacteria by foam fractionation. Aquac Eng 44, 19-24. https://doi.org/10.1016/j.aquaeng.2010.11.001.
  26. Park J, Kim PK, Lim T and Daniels HV. 2013. Ozonation seawater recirculating system for black seabream Acanthopagrus schlegelii (Bleeker): Effects on solids, bacteria, water clarity, and color. Aquac Eng 55, 1-8. http://dx.doi.org/10.1016/j.aquaeng.2013.01.002.
  27. Park NB, Lee HY, Kim SM and Lee JS. 2014a. Nitrification and Denitrification of land-base fish farm wastewater using an anaerobic upflow biological aerated filter. Korean J Fish Aquat Sci 47, 622-629. http://dx.doi.org/10.5657/KFAS.2014.0622.
  28. Park SD, Kim PK and Jeon JK. 2014b. Effect of Ammonia Concentration in Rearing Water on Growth and Blood Components of the Parrotfish Oplegnathus fasciatus. Korean J Fish Aquat Sci 47, 840-846. http://dx.doi.org/10.5657/KFAS.2014.0840.
  29. Park SD, Kim YH, Park J and Kim PK. 2018. Changes in Water Quality and Bacterial Compositions in Culture Water of an Ozonated Flounder Farm. Korean J Environ Biol 36, 90-97. https://doi.org/10.11626/KJEB.2018.36.1.090.
  30. Pierson PM, Lamers A, Flik G and Mayer-Gostan N. 2004. The stress axis, stanniocalcin, and ion balance in rainbow trout. Gen Comp Endocrinol 137, 263-271. Http://doi:10.1016/j.ygcen.2004.03.010.
  31. Powell A, Chingombe P, Lupatsch I, Shields RJ and Lloyd R. 2015. The effect of ozone on water quality and survival of turbot (Psetta maxima) maintained in a recirculating aquaculture system. Aquac Eng 64, 20-24. http://dx.doi.org/10.1016/j.aquaeng.2014.11.005.
  32. Reiser S, Wuertz S, Schroeder JP, Kloas W and Hanel R. 2011. Risks of seawater ozonation in recirculation aquaculture - Effects of oxidative stress on animal welfare of juvenile turbot (Psetta maxima, L.). Aquat Toxicol 105, 508-517. https://doi.org/10.1016/j.aquatox.2011.08.004.
  33. Ritola O, Peters LD, Livingstone DR and Lindstrom-Seppa P. 2002. Effects of in vitro exposure to ozone and/or hyperoxia on superoxide dismutase, catalase, glutathione and lipid peroxidation in red blood cells and plasma of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac Res 33, 165-175. https://doi.org/10.1046/j.1365-2109.2002.00649.x.
  34. Roh HJ, Lim YJ, Kim A, Kim NE, Kim Y , Park NB , Hwang JY , Kwon MG and Kim DH. 2018. Distribution of Indicator Bacteria in Seawater off the Coast of Jeju Island. Korean J Fish Aquat Sci 51, 450-455. https://doi.org/10.5657/KFAS.2018.0450.
  35. Schroeder JP, Croot PL, Von Dewitz B, Waller U and Hanel R. 2011. Potential and limitations of ozone for the removal of ammonia, nitrite, andyellow substances in marine recirculating aquaculture systems. Aquac Eng 45, 35-41. https://doi.org/10.1016/j.aquaeng.2011.06.001.
  36. Schroeder JP, Klatt SF, Schlachter M, Zablotski Y, Keuter S, Spieck E and Schulz C. 2015. Impact of ozonation and residual ozone-produced oxidants on the nitrification performance of moving-bed biofilters from marine recirculating aquaculture systems. Aquac Eng 65, 27-36. https://doi.org/10.1016/j.aquaeng.2014.10.008.
  37. Sharrer MJ and Summerfelt ST. 2007. Ozonation followed by ultraviolet irradiation provides effective bacteria inactivation in a freshwater recirculating system. Aquac Eng 37, 180-191. https://doi.org/10.1016/j.aquaeng.2007.05.001.
  38. Stiller KT, Vanselow KH ,Moran D ,Bojens G ,Voigt W ,Meyer S and Schulz C. 2015. The effect of carbon dioxide on growth and metabolism in juvenile turbot Scophthalmus maximus L. Aquaculture 444, 143-150. https://doi.org/10.1016/j.aquaculture.2015.04.001.
  39. Tango MS and Gagnon GA. 2003. Impact of ozonation on water quality in marine recirculation systems. Aquac Eng 29, 125-137. https://doi.org/10.1016/S0144-8609(03)00061-X.
  40. Van Der Boon J, Van Den Thillart GEEJM and Addink ADF. 1991. The effects of cortisol administration on intermediary metabolism in teleost fish. Comp Biochem Physiol A Physiol, 47-53. https://doi.org/10.1016/0300-9629(91)90182-C.
  41. Von Gunten U. 2003. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37, 1469-1487. https://doi.org/10.1016/S0043-1354(02)00458-X.
  42. Vijayan V and Tan CE. 1997. Developing human biliary system in three dimensions. Dev Biol 249, 389-398. https://doi.org/10.1002/(SICI)1097-0185(199711)249:3<389::AID AR10>3.0.CO;2-K.
  43. Wedemeyer GA, Nelson NC and Yasutake WI. 1979. Physiological and biochemical aspects of ozone toxicity to rainbow-trout (Salmo gairdneri). Can J Fish Aquat Sci 36, 605-614.
  44. Wold PA, Holan AB, Qie G, Attramadal K, Bakke I, Vadstein O and Leiknes T. 2014. Effects of membrane filtration on bacterial number and microbial diversity in marine recirculating aquaculture system (RAS) for Atlantic cod (Gadus morhua L.) production. Aquaculture 422-423, 69-77. https://doi.org/10.1016/j.aquaculture.2013.11.019.