DOI QR코드

DOI QR Code

Pull-off Strength of Jagged Pin-reinforced Composite Hat Joints

요철핀으로 보강된 복합재 모자형 체결부 구조의 강도 연구

  • Kwak, Byeong-Su (School of Mechanical and Aerospace Engineering, Graduate School, Gyeongsang National University) ;
  • Kim, Dong-Gwan (Lightweight Automotive Components Development Team, LG Hausys) ;
  • Kweon, Jin-Hwe (School of Mechanical and Aerospace Engineering, Graduate School, Gyeongsang National University)
  • Received : 2018.10.12
  • Accepted : 2018.12.11
  • Published : 2018.12.31

Abstract

The effect of stainless steel jagged-pin reinforcement on the pull-off strength of the composite hat-joint was studied by the test. The pins were physically and chemically surface-treated and inserted in the thickness direction over the interface where the skin and stiffener meet. The specimens including the jagged-pins were made by co-curing process. Diameters of the jagged-pins were 0.3, 0.5 and 0.7 mm. The pin areal densities were set to 0.5 and 2.0% based on the interface area where the skin and stiffener meet. The specimens using 0.3 mm diameter normal (un-jagged) pins with 2.0% areal density were additionally fabricated and tested to investigate the pin shape effect on the pull-off strength. The pull-off strengths of specimens reinforced with 0.5% areal density by 0.3, 0.5, and 0.7 mm diameter pins were 45, 19 and 9% higher than those of un-reinforced specimens, respectively. In case with 2.0% pin areal density, the strengths were 127, 45, and 11% higher than those of un-reinforced specimens, respectively. The test results show that the higher pin areal density results in the higher strength when the pin diameter is the same. When the pin areal density is the same, the smaller pin diameter leads to higher strength. When the joints using jagged-pins and normal pins in 2.0% areal density with 0.3 mm diameter, the joints of jagged-pins showed the 64% higher strength. From the results of this study, it was confirmed that jagged-pin reinforcement can be an effective method for improving the pull-off strength of composite hat-joint.

스테인리스 강으로 제작된 요철핀의 보강이 복합재 모자형 체결부의 풀오프 강도에 미치는 영향을 시험으로 연구하였다. 요철핀에는 물리적, 화학적 표면처리를 수행하였고, 체결부의 외피와 보강재가 만나는 영역에 두께방향으로 핀을 삽입하였다. 모자형 체결부 시편은 요철핀을 포함하여 일체성형으로 제작하였다. 사용된 요철핀의 지름은 0.3, 0.5, 0.7 mm로 세 가지이다. 핀의 삽입밀도는 외피와 보강재가 만나는 면적 기준으로 0.5, 2.0% 두 가지이다. 요철핀과 일반핀의 효과를 비교하기 위하여 0.3 mm 일반핀을 2.0% 밀도로 삽입한 시편을 추가로 제작하여 시험을 수행하였다. 0.3, 0.5, 0.7 mm의 요철핀을 0.5%의 밀도로 삽입한 시편의 강도는 보강되지 않은 시편 대비 각각 45, 19, 9% 높게 나타났고, 2.0% 밀도의 경우 강도는 각각 127, 45, 11% 높게 나타났다. 시험 결과 지름이 동일할 경우 밀도가 높을수록, 밀도가 동일할 경우 지름이 작을수록 보강효과가 더 높게 나타나는 것을 알 수 있었다. 요철핀과 일반핀의 효과를 비교한 결과 2.0% 밀도로 0.3 mm 직경의 핀을 이용하여 보강할 경우, 요철핀 보강시편이 일반핀 보강 시편보다 64% 높은 강도를 보였다. 본 연구의 결과로부터 요철핀 보강이 복합재 모자형 체결부의 풀오프 강도 향상을 위한 효과적인 방법이 될 수 있음을 확인하였다.

Keywords

BHJRB9_2018_v31n6_323_f0001.png 이미지

Fig. 1. Microscopic images of surface for 0.3 mm diameter Z-pin

BHJRB9_2018_v31n6_323_f0002.png 이미지

Fig. 2. SEM images of surface for Z-pin

BHJRB9_2018_v31n6_323_f0003.png 이미지

Fig. 3. Specimen configuration (unit : mm) [21]

BHJRB9_2018_v31n6_323_f0004.png 이미지

Fig. 4. Conceptual diagram for making specimen [21]

BHJRB9_2018_v31n6_323_f0005.png 이미지

Fig. 5. Typical acrylic mould for Z-pinning

BHJRB9_2018_v31n6_323_f0006.png 이미지

Fig. 6. Z-pins arrangement

BHJRB9_2018_v31n6_323_f0007.png 이미지

Fig. 7. Test set-up and fixtures

BHJRB9_2018_v31n6_323_f0008.png 이미지

Fig. 8. Load-deflection curves of hat joint Z-pinned with 0.5% density

BHJRB9_2018_v31n6_323_f0009.png 이미지

Fig. 9. Failure development of hat joint with 0.5% Z-pin density

BHJRB9_2018_v31n6_323_f0010.png 이미지

Fig. 10. Failure strength and bonded area between laminate and Z-pin (0.5% density)

BHJRB9_2018_v31n6_323_f0011.png 이미지

Fig. 11. Load-deflection curves of hat joint Z-pinned with 2.0% density

BHJRB9_2018_v31n6_323_f0012.png 이미지

Fig. 12. Failure development of hat joint with 2.0% Z-pin density

BHJRB9_2018_v31n6_323_f0013.png 이미지

Fig. 13. Failure strength and bonded area between laminate and Z-pin (2.0% density)

BHJRB9_2018_v31n6_323_f0014.png 이미지

Fig. 14. Load-deflection curves of hat joint Z-pinned by 0.3 mm diameter pins with 2.0% density

Table 1. Test matrix

BHJRB9_2018_v31n6_323_t0001.png 이미지

References

  1. Vuure, A.W.V., Ko, F.K., and Beevers, C., "Net-shape knitting for complex composite preforms," Textile Research Journal, Vol. 73, No. 1, 2003, pp. 1-10. https://doi.org/10.1177/004051750307300101
  2. Wang, Z., Bai, J., Sobey, A., Xiong, J., and Shenoi, A., "Optimal design of triaxial weave fabric composites under tension," Composite Structures, Vol. 201, 2018, pp. 616-624. https://doi.org/10.1016/j.compstruct.2018.06.090
  3. Zheng, Y., and Sun, Y., "Tensile response of carbon-aramid hybrid 3D braided composites," Materials & Design, Vol. 116, 2017, pp. 246-252. https://doi.org/10.1016/j.matdes.2016.11.082
  4. Zhou, H., Hu, D., Gu, B., and Sun, B., "Transverse impact performance and finite element analysis of three dimensional braided composite tubes with different braiding layers," Composite Structures, Vol. 168, 2017, pp. 246-259.
  5. Mourits, A.P., "Review of z-pinned composite laminates," Composites: Part A, Vol. 38, No. 12, 2007, pp. 2383-2397. https://doi.org/10.1016/j.compositesa.2007.08.016
  6. Francesconi, L., and Aymerich, F., "Effect of z-pinning on the impact resistance of composite laminate with different layups," Composites: Part A, Vol. 114, 2018, pp. 136-148. https://doi.org/10.1016/j.compositesa.2018.08.013
  7. Pingkarawat, K., and Mouritz, A.P., "Improving the mode-I delamination fatigue resistance of composites using z-pins," Composites Science and Technology, Vol. 92, 2014, pp. 70-76. https://doi.org/10.1016/j.compscitech.2013.12.009
  8. Hoffmann, J., and Scharr, G., "Compression properties of composite laminates reinforced with rectangular z-pins," Composites Science and Technology, Vol. 167, 2018, pp. 463-469. https://doi.org/10.1016/j.compscitech.2018.08.042
  9. M'membe, B., Gannon, S., Yasaee, M., and Hallett, S.R., and Partridge, I.K., "Mode II delamination resistance of composites reinforced with inclined Z-pins," Materials & Design, Vol. 94, 2016, pp. 565-572. https://doi.org/10.1016/j.matdes.2016.01.051
  10. Zhang, B., Allegri, G., Yasaee, M., Hallett, S.R., and Partridge, I.K., "On the delamination self-sensing function of Z-pinned composite laminates," Composites Science and Technology, Vol. 128, 2016, pp. 138-146. https://doi.org/10.1016/j.compscitech.2016.03.019
  11. Pegorin, F., Pingkarawat, K., and Mouritz, A.P., "Electrical-based delamination crack monitoring in composites using zpins," Composites: Part A, Vol. 104, 2018, pp. 120-128. https://doi.org/10.1016/j.compositesa.2017.10.025
  12. Koh, T.M., Feih, S., and Mouritz, A.P., "Experimental determination of the structural properties and strengthening mechanics of z-pinned composite T-joints," Composite Structures, Vol. 93, No. 9, 2011, pp. 2222-2230. https://doi.org/10.1016/j.compstruct.2011.03.009
  13. Koh, T.M., Isa, M.D., Feih, S., and Mouritz, A.P., "Experimental assessment of the damage tolerance of z-pinned T-stiffened composite panels," Composites: Part B, Vol. 44, No. 1, 2013, pp. 620-627. https://doi.org/10.1016/j.compositesb.2012.02.017
  14. Koh, T.M., Isa, M.D., Chang, P., and Mouritz, A.P., "Improving the structural properties and damage tolerance of bonded composite joints using z-pins," Journal of Composite Materials, Vol. 46, No. 26, 2012, pp. 3255-3265. https://doi.org/10.1177/0021998312437233
  15. Koh, T.M., Feih, S., and Mouritz, A.P., "Strengthening mechanics of thin and thick composite T-joints reinforced with z-pins," Composites: Part A, Vol. 43, No. 8, 2012, pp. 1308-1317. https://doi.org/10.1016/j.compositesa.2012.03.023
  16. Park, Y.B., Lee, B.H., Kweon, J.H., Choi, J.H., and Choi, I.H., "The strength of composite bonded T-joints transversely reinforced by carbon pins," Composite Structures, Vol. 94, No. 2, 2012, pp. 625-634. https://doi.org/10.1016/j.compstruct.2011.08.026
  17. Li, M., Chen, P., Kong, B., Peng, T., Yao, Z., and Qiu, X., "Influences of thickness ratios of flange and skin of composite Tjoints on the reinforcement effect of Z-pin," Composites: Part B, Vol. 97, 2016, pp. 216-225. https://doi.org/10.1016/j.compositesb.2016.05.007
  18. Ko, M.G., Kweon, J.H., and Choi, J.H., "Fatigue characteristics of jagged pin-reinforced composite single-lap joints in hygrothermal environments," Composite Structures, Vol. 119, 2015, pp. 59-66. https://doi.org/10.1016/j.compstruct.2014.08.025
  19. Son, H.G., Park, Y.B., Kweon, J.H., and Choi, J.H., "Fatigue behaviour of metal pin-reinforced composite single-lap joints in a hygrothermal environment," Composite Structures, Vol. 108, 2014, pp. 151-160. https://doi.org/10.1016/j.compstruct.2013.09.012
  20. Lee, B.H., Park, Y.B., Kweon, J.H., Choi, J.H., Choi, I.H., and Chang, S.T., "Strength of stainless steel pin-reinforced composite single-lap joints," Composite Research, Vol. 25, No. 3, 2012, pp. 65-69. https://doi.org/10.7234/kscm.2012.25.3.065
  21. Ji, H., Kweon, J.H., and Choi, J.H., "Fatigue characteristics of stainless steel pin-reinforced composite hat joints," Composite Structures, Vol. 108, 2014, pp. 49-56. https://doi.org/10.1016/j.compstruct.2013.08.040
  22. Reynolds, A.P., Tang, W., Gnaupel-Herold, T., and Prask, H., "Structure, properties, and residual stress of 304L stainless steel friction stir welds," Scripta Materialia, Vol. 48, No. 9, 2003, pp. 1289-1294. https://doi.org/10.1016/S1359-6462(03)00024-1