Fig. 1. Antenna geometry (a) front side and (b) back side.
Fig. 2. Simulated current distributions at resonant frequency 7.9 GHz front side (a) and back side (b).
Fig. 3. Simulated input impedance of the proposed antenna (HFSS only).
Fig. 4. Equivalent circuit model of the proposed antenna.
Fig. 5. Impedance (red line) of the proposed antenna depicted on smith chart (obtained from ADS tool).
Fig. 6. Manufactured proposed antenna (a) front side and (b) back side.
Fig. 7. Simulated and measured reflection coefficients vs. frequency.
Fig. 8. Quality factor of the proposed antenna determined using the two methods, (14) and (15).
Fig. 9. Simulated radiation efficiency and peak gain.
Fig. 10. Simulated group delay (ns) and front to back ratio vs frequency.
Fig. 11. Simulated radiation pattern at (a) 4.9 GHz, (b) 9.8 GHz, (c) 14 GHz and measured radiation pattern at (d) 4.9 GHz, (e) 9.8 GHz, (f) 14 GHz resonance frequencies of the proposed antenna.
Fig. 12. General setup of patch antenna proposed for image detection.
Table 1. Optimized dimensions of proposed antenna
Table 2. Performance comparison of proposed antenna
References
- R. K. Singh, and D. A. Pujara, "A novel design of ultr.-awideband quarter circular microstrip monopole antenna," Microwave and Optical Technology Letters, vol. 59, no. 2, pp. 225-229, 2017. DOI: 10.1002/mop.30271.
- I. Nadeem and Y. J. Kim, "Design of a UWB patch antenna for with U-shaped narrow strip structures," The Journal of Korean Institute of Communications and Information Sciences, vol. 42, no. 9, pp. 1739-1745, 2017. DOI: 10.7840/kics.2017.42.9.1739.
- N. George and B. Lethakumary, "A compact microstrip antenna for UWB applications," Microwave and Optical Technology Letters, vol. 57, no. 3, pp. 621-624, 2015. DOI: 10.1002/mop.28910.
- S. Das, D. Mitra, and S. R. B. Chaudhuri, "Design of UWB planar monopole antennas with etched spiral slot on the patch for multiple band-notched characteristics," International Journal of Microwave Science and Technology, vol. 2015, article ID. 303215, 2015. DOI: 10.1155/2015/303215.
- R. L. Hernandez, J. T. Mendez, A. J. Aguilar, R. F. Leal, and R. L. Y. Miranda, "Reduced size elliptic UWB antenna with inscribed third iteration Sierpinski triangle for on-body applications," Microwave and Optical Technology Letters, vol. 59, no. 3, pp. 635-641, 2017. DOI: 10.1002/mop.30361.
- M. Manohar, R. S. Kshetrimayum, and A. K. Gogoi, "A compact dual band-notched circular ring printed monopole antenna for super-wideband applications," Radioengineering, vol. 26, no. 1, pp. 64-70, 2017. DOI: 10.13164/re.2017.0064.
- S. Pyo and Y. Sung, "Asymmetrical coupling feed of circularly polarized microstrip antenna for bandwidth enhancement," Microwave and Optical Technology Letters, vol. 58, no. 7, pp. 1672-1675, 2016. DOI:10.1002/mop.29880.
- N. Ojaroudi, "Compact UWB monopole antenna with enhanced bandwidth using rotated L-shaped slots and parasitic structures," Microwave and Optical Technology Letters, vol. 56, no. 1, pp. 175-178, 2014. DOI: 10.1002/mop.28055.
- R. Addaci and T. Fortaki, "Miniature low profile UWB antenna: new techniques for bandwidth enhancement and radiation pattern stability," Microwave and Optical Technology Letters, vol. 58, no. 8, pp. 1808-1813, 2016. DOI: 10.1002/mop.29907.
- A. A. Deshmukh, P. Mohadikar, K. Lele, G. Panchal, and A. Parvez, "Psi-shaped ultra-wideband monopole antenna with a modified feeding structure," Procedia Computer Science, vol. 93, pp. 60-66, 2016. DOI: 10.1016/j.procs.2016.07.182.
- K. Hati, N. Sabbar, A. Hajjaji, and H. Asselman, "Design of new antenna in the form of dollar-symbole for WLAN technology," Procedia Technology, vol. 22, pp. 606-613, 2016. DOI: 10.1016/j.procs.2016.01.029.
- T. Srivastava and B. S. Rai, "Multiband monopole U-slot patch antenna with truncated ground plane," Microwave and Optical Technology Letters, vol. 58, no. 8, pp. 1949-1952, 2016. DOI: 10.1002/mop.29950.
- D. Guha, S. Biswas, and C. Kumar, "Printed antenna designs using defected ground structures: a review of fundamentals and state-of-the-art developments," Forum for Electromagnetic Research Methods and Application Technologies, vol. 2, pp. 1-13, 2014.
- A. Kumar and M. V. Kartikeyan, "Design and realization of microstrip filters with new defected ground structure (DGS)," Engineering Science and Technology, an International Journal, vol. 20, no. 2, pp. 679-686, 2017. DOI: 10.1016/j.jestch.2016.10.015.
- S. R. Best, "The Foster reactance theorem and quality factor for antennas," IEEE Antennas and Wireless Propagation Letters, vol. 3, no. 1, pp. 306-309, 2004. DOI: 10.1109/2004. 839240.
- Y. Lu, Y. Huang, H. T. Chattha, and P. Cao, "Reducing ground-plane effects on UWB monopole antennas," IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 147-150, 2011. DOI: 10.1109/LAWP.2011.2119459.
- W. Yong, J. Li, and L. X. Ran, "An equivalent circuit modeling method for ultra-wideband antennas," Progress In Electromagnetics Research, vol. 82, pp. 433-445, 2008. DOI: 10.2528/PIER08032303.
- G. R. DeJean and M. M. Tentzeris, " The application of lumped element equivalent circuits approach to the design of single-port microstrip antennas," IEEE Transactions on Antennas and Propagation, vol. 55, no. 9, pp. 2468-2472, 2007. DOI: 10.1109/TAP.2007.904129.
- D. Caratelli, R. Cicchetti, G. B. Babik, and A. Faraone, "Circuit model and near-field behavior of a novel patch antenna for WWLAN applications," Microwave and Optical Technology Letters, vol. 49, no. 1, pp. 97-100, 2007. DOI: 10.1002/mop.22057.
- M. Anzarriazdeh, A. Ghorbani, and R. A. Abd-Alhameed, "An approach to equivalent circuit modeling of rectangular microstrip antennas," Progress In Electromagnetics Research B, vol. 8, pp. 77-86, 2008. DOI: 10.2528/PIERB08050403.
- O. K. Heong, G. C. Hock, C. K. Chakrabarty, and G. T. Hock, "Generalized equivalent circuit model for ultra wideband antenna structure with double steps for energy scavenging," in IOP Conference Series: Earth and Environmental Sciences, vol. 16, no. 1, 2013. DOI: 10.1088/1755-1315/16/1/012073/meta.
- W. R. Dearnley and A. R. Barel, "A comparison of models to determine the resonant frequencies of a rectangular microstrip antenna," IEEE Transactions on Antennas and Propagation, vol. 37, no. 1, pp. 114-118, 1989. DOI: 10.1109/8.192173.
- M. H. Badjian, C. K. Chakrabarty, S. Devkumar, and G. C. Hock, "Circuit modeling of an UWB patch antenna," in Proceedings of IEEE International RF and Microwave Conference, Kuala Lumpur, Malaysia, pp. 3-6, 2008. DOI: 10.1109/RFM.2008.4897359.
- P. Khanna, A. Sharma, K. Shinghal, and A. Kumar, "A defected structure shaped CPW-fed wideband microstrip antenna for wireless applications," Journal of Engineering, vol. 2016, article ID. 2863508, 2016. DOI: 10.1155/2016/2863508.
- S. Kwon and S. Lee, "Recent advances in microwave imaging for breast cancer detection," International Journal of Biomedical Imaging, vol. 2016, article ID. 5054912, 2016. DOI: 10.1155/2016/5054912.
- W. Geyi, P. Jarmuszewski, and Y. Qi, "The Foster reactance theorem for antennas and radiation Q," IEEE Transactions on Antennas and Propagation, vol. 48, no. 3, pp. 401-408, 2000. DOI: 10.1109/8.841901.
- A. D. Yaghjian and S. R. Best, "Impedance, bandwidth and Q of antennas," IEEE Transactions on Antennas and Propagation, vol. 53, no. 4, pp. 1298-1324, 2005. DOI: 10.1109/TAP.2005.8444 43.
Cited by
- Излучающий патч с дугообразной полоской и прямоугольным штырем внутри заземляющей пластины для широкополос vol.62, pp.10, 2018, https://doi.org/10.20535/s0021347019100030