References
- Alvarez, E., Fey, E. G., Valax, P., Yim, Z., Peterson, J. D., Mesri, M., Jeffers, M., Dindinger, M., Twomlow, N., Ghatpande, A., LaRochelle, W. J., Sonis, S. T. and Lichenstein, H. S. 2003. Preclinical characterization of CG53135 (FGF-20) in radiation and concomitant chemotherapy/ radiation- induced oral mucositis. Clin. Cancer Res. 9, 3454-3461.
- Andrades, J. A., Santamaria, J. A., Wu, L. T., Hall, F. L., Nimni, M. E. and Becerra, J. 2001. Production of a recombinant human basic fibroblast growth factor with a collagen binding domain. Protoplasma 218, 95-103. https://doi.org/10.1007/BF01288365
- Andrades, J. A., Wu, L. T., Hall, F. L., Nimni, E. and Becerra, J. 2001. Engineering, expression, and renaturation of a collagen- targeted human bFGF fusion protein. Growth Factors 18, 261-275. https://doi.org/10.3109/08977190109029115
- Alibolandi, M. and Mirzahoseini, H. 2011. Purification and refolding of overexpressed human basic fibroblast growth factor in Escherichia coli. Biotechnol. Res. Int. 973741, 1-6.
- An, J. J., Eum, W. S., Kwon, H. S., Koh, J. S., Lee, S. Y., Baek, J. H., Cho, Y. J., Kim, D. W., Han, K. H., Park, J., Jang, S. H. and Choi, S. Y. 2013. Protective effects of skin permeable epidermal and fibroblast growth factor against ultraviolet-induced skin damage and human skin wrinkles. J. Cosmet. Dermatol. 12, 287-295. https://doi.org/10.1111/jocd.12067
- Bowden, G. A., Paredes, A. M. and Georgiou, G. 1991. Structure and morphology of inclusion bodies in Escherichia coli. Bio/Technology 9, 725-730.
- Bikfalvi, A., Klein, S., Pintucci, G. and Rifkin, D. B. 1997. Biological roles of fibroblast growth factor-2. Endocr. Rev. 18, 26-45.
- Carrio, M. M., Corchero, J. L. and Villaverde, A. 1998. Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiol. Lett. 169, 9-15. https://doi.org/10.1111/j.1574-6968.1998.tb13292.x
- Derossi, D., Joliot, A. H., Chassaing, G. and Prochiantz, A. 1994. The third helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444-10450.
- Elliott, G. and O'Hare, P. 1997. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 88, 223-233. https://doi.org/10.1016/S0092-8674(00)81843-7
- Frankel, A. D. and Pabo, C. O. 1988. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189-1193. https://doi.org/10.1016/0092-8674(88)90263-2
- Garke, G., Deckwer, W. D. and Anspach, F. B. 2000. Preparative two-step purification of recombinant human basic fibroblast growth factor from high-cell-density cultivation of Escherichia coli. J. Chromatogr. B: Biomed. Sci. Appl. 737, 25-38.
- Gros, E., Deshayes, S., Morris, M. C., Aldrian-Herrada, G., Depollier, J., Heitz, F. and Divita, G. 2006. A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochim. Biophys. Acta. 1758, 384-393. https://doi.org/10.1016/j.bbamem.2006.02.006
- Gasparian, M. E., Elistratov, P. A., Drize, N. I., Nifontova, I. N., Dolgikh, D. A. and Kirpichnikov, M. P. 2009. Overexpression in Escherichia coli and purification of human fibroblast growth factor (FGF-2). Biochemistry (Mosc) 74, 221-225. https://doi.org/10.1134/S000629790902014X
- Hagiwara, A., Nakayama, F., Motomura, K., Asada, M., Suzuki, M., Imamura, T. and Akashi, M. 2009. Comparison of expression profiles of several fibroblast growth factor receptors in the mouse Jejunum: Suggestive evidence for a differential radioprotective effect among major FGF family members and the potency of FGF1. Radiat. Res. 172, 58-65. https://doi.org/10.1667/RR1570.1
- Iwane, M., Kurokawa, T., Sasada, R., Seno, M., Nakagawa, S. and Igarashi, K. 1987. Expression of cDNA encoding human basic fibroblast growth factor in E. coli. Biochem. Biophys. Res. Commun. 146, 470-477. https://doi.org/10.1016/0006-291X(87)90553-5
- Knoerzer, W., Binder, H, P., Schneider, K., Grussc, P., McCarthyd, J. E. G. and Risaue, W. 1989. Expression of synthetic genes encoding bovine and human basic fibroblast growth factors (bFGF). Gene 75, 21-30. https://doi.org/10.1016/0378-1119(89)90379-X
- Kuriyama, M., Nakatu, M., Nakao, M., Igarashi, K. and Kitano, K. 1992. Controlled expression of human basic fibroblast growth factor mutein CS23 in Escherichia coli under a bacteriophage T7 promoter. J. Ferment. Bioeng. 74, 67-72.
- Kroiher, M., Raffioni, S. and Steele, R. E. 1995. Single step purification of biologically active recombinant rat basic fibroblast growth factor by immobilized metal affinity chromatography. Biochim. Biophys. Acta. 1250, 29-34. https://doi.org/10.1016/0167-4838(95)00060-8
- Kim, H. S. 1998. Assignment1 of the human basic fibroblast growth factor gene FGF2 to chromosome 4 band q26 by radiation hybrid mapping. Cytogenet. Cell Genet. 83, 73. https://doi.org/10.1159/000015129
- Lemaitre, G., Laaroubi, K., Soulet, L., Barritault, D. and Miskulin, M. 1995. Production and purification of active FGF2 via recombinant fusion protein. Biochimie 77, 162-166. https://doi.org/10.1016/0300-9084(96)88120-X
- Lindgren, M., Hallbrink, M., Prochiantz, A. and Langel, U. 2000. Cell-penetrating peptides. Trends Pharmacol. Sci. 21, 99-103. https://doi.org/10.1016/S0165-6147(00)01447-4
- Lindsay, M. A. 2002. Peptide-mediated cell delivery: application in protein target validation. Curr. Opin. Pharmacol. 2, 587-594. https://doi.org/10.1016/S1471-4892(02)00199-6
- Misawa, S. and Kumagai, I. 1999. Refolding of therapeutic protein produced in Escherichia coli as inclusion bodies. Biopolymers 51, 297-307. https://doi.org/10.1002/(SICI)1097-0282(1999)51:4<297::AID-BIP5>3.0.CO;2-I
- Mirzahoseini, H., Mehraein, F., Omidinia, E. and Razavi, M. R. 2004. Differential expression of human basic fibroblast growth factor in Escherichia coli: potential role of promoter. World. J. Microbiol. Biotechnol. 20, 161-165. https://doi.org/10.1023/B:WIBI.0000021750.22050.55
- Maclachlan, T., Narayanan, B., Gerlach, V. L., Smithson, G., Gerwien, R. W., Folkerts, O., Fey, E. G., Watkins, B., Seed, T. and Alvarez, E. 2005. Human fibroblast growth factor 20 (FGF-20; CG53135-05): a novel cytoprotectant with radioprotective potential. Int. J. Radiat. Biol. 81, 567-579. https://doi.org/10.1080/09553000500211091
- Nakayama, F., Muller, K., Hagiwara, A., Ridi, R., Akashi, M. and Meineke, V. 2008. Involvement of intracellular expression of FGF12 in radiation-induced apoptosis in mast cells. J. Radiat. Res. 49, 491-501. https://doi.org/10.1269/jrr.08021
- Nakayama, F., Hagiwara, A., Kimura, M., Akashi, M. and Imamura, T. 2009. Evaluation of radiation-induced hair follicle apoptosis in mice and the preventive effects of fibroblast growth factor-1. Exp. Dermatol. 18, 889-892. https://doi.org/10.1111/j.1600-0625.2009.00849.x
- Nakayama, F., Hagiwara, A., Umeda, S., Asada, M., Goto, M., Oki, J., Suzuki, M. and Imamura, T. 2010. Post treatment with an FGF chimeric growth factor enhances epithelial cell proliferation to improve recovery from radiation-induced intestinal damage. Int. J. Radiat. Oncol. Biol. Phys. 78, 860-867. https://doi.org/10.1016/j.ijrobp.2010.04.045
- Nakayama, F., Yasuda, T., Umeda, S., Asada, M., Imamura, T., Meineke, V. and Akashi, M. 2011. Fibroblast growth factor- 12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cell-penetrating peptide domain. J. Biol. Chem. 286, 25823-25834. https://doi.org/10.1074/jbc.M110.198267
- Papadopoulou, L. C. and Tsiftsoglou, A. S. 2013. The potential role of cell penetrating peptides in the intracellular delivery of proteins for therapy of erythroid related disorders. Pharmaceuticals 6, 32-53. https://doi.org/10.3390/ph6010032
- Qing, G., Ma, L. C., Khorchid, A., Swapna, G. V. T., Mal, T. K., Takayama, M. M., Xia, B., Phadtare, S., Ke, H., Acton, T., Montelione, G. T., Ikura, M. and Inouye, M. 2004. Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol. 22, 877-882. https://doi.org/10.1038/nbt984
- Rinas, U., Tsai, L. B., Lyons, D., Fox, G. M., Stearns, G., Fieschko, J., Fenton, D. and Bailey, J. E. 1992. Cysteine to serine substitutions in basic fibroblast growth factor: effect on inclusion body formation and proteolytic susceptibility during in vitro refolding. Nat. Biotechnol. 10, 435-440. https://doi.org/10.1038/nbt0492-435
- Rosano, G. L. and Ceccarelli, E. A. 2014. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 5, 172.
- Schwarze, S. R., Ho, A., Vocero-Akbani, A. and Dowdy, S. F. 1999. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science 285, 1569-1572. https://doi.org/10.1126/science.285.5433.1569
- Schwarze, S. R., Hruska, K. A. and Dowdy, S. F. 2000. Protein transduction: Unrestricted delivery into all cells? Trends Cell Biol. 10, 290-295.
- Sheng, Z., Chang, S. B. and Chirico, W. J. 2003. Expression and purification of a biologically active basic fibroblast growth factor fusion protein. Protein. Expr. Purif. 27, 267-271. https://doi.org/10.1016/S1046-5928(02)00601-0
- Song, J. A., Koo, B. K., Chong, S. H., Kwak, J., Ryu, H. B., Nguyen, M. T., Vu, T. T. T., Jeong, B., Kim, S. W. and Choe, H. 2013. Expression and purification of biologically active human FGF2 containing the b'a' domains of human PDI in Escherichia coli. Appl. Biochem. Biotechnol. 170, 67-80. https://doi.org/10.1007/s12010-013-0140-3
- Sun, C., Li, Y., Taylor, S. E. and Marston, F. A. O. 2015. Halo Tag is an effective expression and solubilisation fusion partner for a range of fibroblast growth factors. PeerJ 3, e1060. https://doi.org/10.7717/peerj.1060
- Taylor, G., Hoare, M., Gray, D. R. and Marston, F. A. O. 1986. Size and density of inclusion bodies. Bio/Technology 4, 553-557.
- Wang, J., Hong, A., Ren, J. S., Suna, F. Y., Shia, Y. J., Liua, K., Xiea, Q. L., Daia, Y., Lia, Z. Y. and Chen, Y. 2006. Biochemical properties of C78SC96S rhFGF-2: a double point-mutated rhFGF-2 increases obviously its activity. J. Biotechnol. 121, 442-447.