DOI QR코드

DOI QR Code

Expression Properties and Skin Permeability of Human Basic Fibroblast Growth Factor with or without PTD Fused to N- or C-terminus in Escherichia coli

대장균 발현시스템에서 단백질 전달 도메인 PTD가 인간 섬유아세포 성장인자(FGF2)의 N- 또는 C-말단에 결합 되었을 때 미치는 재조합 단백질 복합체의 발현 특성과 피부 투과능력

  • Received : 2017.11.17
  • Accepted : 2018.03.22
  • Published : 2018.03.30

Abstract

Human fibroblast growth factor (FGF) has the potential to be a commercially important therapeutic or cosmeceutical agent due to its ability to generate tissue and heal wounds. Granting permeability into skin tissues increases the therapeutic effects of FGF. Thus, several researchers have attempted the fusion of FGF conjugates with protein transduction domains (PTDs) to investigate the transduction ability and therapeutic effects of FGF. Less is known, however, about whether the location of PTD fused to the N- or C-terminus of FGF proteins has a significant impact on the folding and stability in Escherichia coli, and eventually, on transduction. Here, we report cloning of human basic fibroblast growth factor (FGF2) as a control and FGF2 with PTD fused to the N- or C-terminal ends of FGF proteins by an overlap extension PCR. We performed expression, verified expression properties of recombinant FGF2 without or with PTD fused to the N-terminus and the C-terminus, and investigated transduction ability into tissue by treating the dorsal skin of mice subjects. As a result, FGF2 and FGF2-PTD (fused to C-terminus) fusion protein were expressed as soluble forms suitable for straight-forward purification, unlike insoluble PTD-FGF2 (fused to N-terminus), but only FGF2-PTD fusion protein could transduce into the dorsal skin tissue of the mice subjects. Our results suggest that FGF2 with PTD fused to the C-terminus is more efficient than other options in terms of expression, purification, and delivery into skin tissue, as it does not require labor-intensive, costly, and time-consuming methods.

인간 섬유아세포 성장인자는 조직 생성 및 상처 치료 효과로 인해 상업적으로 중요한 치료제 또는 화장품소재로서 가능성이 높다. 피부 조직에 침투성을 부여하여 치료효과를 높이기 위해서 단백질 전달 도메인인 PTD를 FGF에 융합을 시도하고 있으며 피부로의 투과능력과 그로인한 치료 효과에 대한 연구도 진행되고 있다. 그러나, PTD가 FGF 단백질의 N- 또는 C-말단에 결합 되었을 때 PTD의 위치가 대장균 발현시스템에서 재조합단백질 접힘 및 안정성, 그리고 결국 피부로의 도입능력에 상당한 영향을 미치는지에 대해서는 알려져 있지 않다. 여기에서 우리는 대조군으로 PTD가 융합되지 않은 인간 염기성 섬유아세포 성장인자(FGF2)와 PTD가 FGF2의 N-말단 또는 C-말단에 융합된 FGF2 복합체를 중합효소연쇄반응(OE-PCR)을 통해 클로닝 하였다. 그 다음 이들 재조합 FGF2의 단백질 발현 및 특성을 확인하고 마우스 등 피부를 이용하여 조직 내로의 도입 능력을 조사 하였다. 결과적으로, 불용성 PTD-FGF2 (N 말단 융합)와는 달리 대조군 FGF2와 FGF2-PTD 융합 단백질(C- 말단 융합)은 가용성 형태로 발현되어 재조합단백질 획득이 용이하였고, 마우스 피부 도입능력은 FGF2-PTD 융합단백질에서만 나타내 보였다. 우리의 결과는 C-말단에 융합된 FGF2-PTD 융합단백질이 발현, 정제, 피부 투과능력의 측면에서 다른 두 옵션들보다 노동, 비용, 시간면에서 보다 더 효율적일 수 있음을 시사한다.

Keywords

References

  1. Alvarez, E., Fey, E. G., Valax, P., Yim, Z., Peterson, J. D., Mesri, M., Jeffers, M., Dindinger, M., Twomlow, N., Ghatpande, A., LaRochelle, W. J., Sonis, S. T. and Lichenstein, H. S. 2003. Preclinical characterization of CG53135 (FGF-20) in radiation and concomitant chemotherapy/ radiation- induced oral mucositis. Clin. Cancer Res. 9, 3454-3461.
  2. Andrades, J. A., Santamaria, J. A., Wu, L. T., Hall, F. L., Nimni, M. E. and Becerra, J. 2001. Production of a recombinant human basic fibroblast growth factor with a collagen binding domain. Protoplasma 218, 95-103. https://doi.org/10.1007/BF01288365
  3. Andrades, J. A., Wu, L. T., Hall, F. L., Nimni, E. and Becerra, J. 2001. Engineering, expression, and renaturation of a collagen- targeted human bFGF fusion protein. Growth Factors 18, 261-275. https://doi.org/10.3109/08977190109029115
  4. Alibolandi, M. and Mirzahoseini, H. 2011. Purification and refolding of overexpressed human basic fibroblast growth factor in Escherichia coli. Biotechnol. Res. Int. 973741, 1-6.
  5. An, J. J., Eum, W. S., Kwon, H. S., Koh, J. S., Lee, S. Y., Baek, J. H., Cho, Y. J., Kim, D. W., Han, K. H., Park, J., Jang, S. H. and Choi, S. Y. 2013. Protective effects of skin permeable epidermal and fibroblast growth factor against ultraviolet-induced skin damage and human skin wrinkles. J. Cosmet. Dermatol. 12, 287-295. https://doi.org/10.1111/jocd.12067
  6. Bowden, G. A., Paredes, A. M. and Georgiou, G. 1991. Structure and morphology of inclusion bodies in Escherichia coli. Bio/Technology 9, 725-730.
  7. Bikfalvi, A., Klein, S., Pintucci, G. and Rifkin, D. B. 1997. Biological roles of fibroblast growth factor-2. Endocr. Rev. 18, 26-45.
  8. Carrio, M. M., Corchero, J. L. and Villaverde, A. 1998. Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiol. Lett. 169, 9-15. https://doi.org/10.1111/j.1574-6968.1998.tb13292.x
  9. Derossi, D., Joliot, A. H., Chassaing, G. and Prochiantz, A. 1994. The third helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444-10450.
  10. Elliott, G. and O'Hare, P. 1997. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 88, 223-233. https://doi.org/10.1016/S0092-8674(00)81843-7
  11. Frankel, A. D. and Pabo, C. O. 1988. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189-1193. https://doi.org/10.1016/0092-8674(88)90263-2
  12. Garke, G., Deckwer, W. D. and Anspach, F. B. 2000. Preparative two-step purification of recombinant human basic fibroblast growth factor from high-cell-density cultivation of Escherichia coli. J. Chromatogr. B: Biomed. Sci. Appl. 737, 25-38.
  13. Gros, E., Deshayes, S., Morris, M. C., Aldrian-Herrada, G., Depollier, J., Heitz, F. and Divita, G. 2006. A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochim. Biophys. Acta. 1758, 384-393. https://doi.org/10.1016/j.bbamem.2006.02.006
  14. Gasparian, M. E., Elistratov, P. A., Drize, N. I., Nifontova, I. N., Dolgikh, D. A. and Kirpichnikov, M. P. 2009. Overexpression in Escherichia coli and purification of human fibroblast growth factor (FGF-2). Biochemistry (Mosc) 74, 221-225. https://doi.org/10.1134/S000629790902014X
  15. Hagiwara, A., Nakayama, F., Motomura, K., Asada, M., Suzuki, M., Imamura, T. and Akashi, M. 2009. Comparison of expression profiles of several fibroblast growth factor receptors in the mouse Jejunum: Suggestive evidence for a differential radioprotective effect among major FGF family members and the potency of FGF1. Radiat. Res. 172, 58-65. https://doi.org/10.1667/RR1570.1
  16. Iwane, M., Kurokawa, T., Sasada, R., Seno, M., Nakagawa, S. and Igarashi, K. 1987. Expression of cDNA encoding human basic fibroblast growth factor in E. coli. Biochem. Biophys. Res. Commun. 146, 470-477. https://doi.org/10.1016/0006-291X(87)90553-5
  17. Knoerzer, W., Binder, H, P., Schneider, K., Grussc, P., McCarthyd, J. E. G. and Risaue, W. 1989. Expression of synthetic genes encoding bovine and human basic fibroblast growth factors (bFGF). Gene 75, 21-30. https://doi.org/10.1016/0378-1119(89)90379-X
  18. Kuriyama, M., Nakatu, M., Nakao, M., Igarashi, K. and Kitano, K. 1992. Controlled expression of human basic fibroblast growth factor mutein CS23 in Escherichia coli under a bacteriophage T7 promoter. J. Ferment. Bioeng. 74, 67-72.
  19. Kroiher, M., Raffioni, S. and Steele, R. E. 1995. Single step purification of biologically active recombinant rat basic fibroblast growth factor by immobilized metal affinity chromatography. Biochim. Biophys. Acta. 1250, 29-34. https://doi.org/10.1016/0167-4838(95)00060-8
  20. Kim, H. S. 1998. Assignment1 of the human basic fibroblast growth factor gene FGF2 to chromosome 4 band q26 by radiation hybrid mapping. Cytogenet. Cell Genet. 83, 73. https://doi.org/10.1159/000015129
  21. Lemaitre, G., Laaroubi, K., Soulet, L., Barritault, D. and Miskulin, M. 1995. Production and purification of active FGF2 via recombinant fusion protein. Biochimie 77, 162-166. https://doi.org/10.1016/0300-9084(96)88120-X
  22. Lindgren, M., Hallbrink, M., Prochiantz, A. and Langel, U. 2000. Cell-penetrating peptides. Trends Pharmacol. Sci. 21, 99-103. https://doi.org/10.1016/S0165-6147(00)01447-4
  23. Lindsay, M. A. 2002. Peptide-mediated cell delivery: application in protein target validation. Curr. Opin. Pharmacol. 2, 587-594. https://doi.org/10.1016/S1471-4892(02)00199-6
  24. Misawa, S. and Kumagai, I. 1999. Refolding of therapeutic protein produced in Escherichia coli as inclusion bodies. Biopolymers 51, 297-307. https://doi.org/10.1002/(SICI)1097-0282(1999)51:4<297::AID-BIP5>3.0.CO;2-I
  25. Mirzahoseini, H., Mehraein, F., Omidinia, E. and Razavi, M. R. 2004. Differential expression of human basic fibroblast growth factor in Escherichia coli: potential role of promoter. World. J. Microbiol. Biotechnol. 20, 161-165. https://doi.org/10.1023/B:WIBI.0000021750.22050.55
  26. Maclachlan, T., Narayanan, B., Gerlach, V. L., Smithson, G., Gerwien, R. W., Folkerts, O., Fey, E. G., Watkins, B., Seed, T. and Alvarez, E. 2005. Human fibroblast growth factor 20 (FGF-20; CG53135-05): a novel cytoprotectant with radioprotective potential. Int. J. Radiat. Biol. 81, 567-579. https://doi.org/10.1080/09553000500211091
  27. Nakayama, F., Muller, K., Hagiwara, A., Ridi, R., Akashi, M. and Meineke, V. 2008. Involvement of intracellular expression of FGF12 in radiation-induced apoptosis in mast cells. J. Radiat. Res. 49, 491-501. https://doi.org/10.1269/jrr.08021
  28. Nakayama, F., Hagiwara, A., Kimura, M., Akashi, M. and Imamura, T. 2009. Evaluation of radiation-induced hair follicle apoptosis in mice and the preventive effects of fibroblast growth factor-1. Exp. Dermatol. 18, 889-892. https://doi.org/10.1111/j.1600-0625.2009.00849.x
  29. Nakayama, F., Hagiwara, A., Umeda, S., Asada, M., Goto, M., Oki, J., Suzuki, M. and Imamura, T. 2010. Post treatment with an FGF chimeric growth factor enhances epithelial cell proliferation to improve recovery from radiation-induced intestinal damage. Int. J. Radiat. Oncol. Biol. Phys. 78, 860-867. https://doi.org/10.1016/j.ijrobp.2010.04.045
  30. Nakayama, F., Yasuda, T., Umeda, S., Asada, M., Imamura, T., Meineke, V. and Akashi, M. 2011. Fibroblast growth factor- 12 (FGF12) translocation into intestinal epithelial cells is dependent on a novel cell-penetrating peptide domain. J. Biol. Chem. 286, 25823-25834. https://doi.org/10.1074/jbc.M110.198267
  31. Papadopoulou, L. C. and Tsiftsoglou, A. S. 2013. The potential role of cell penetrating peptides in the intracellular delivery of proteins for therapy of erythroid related disorders. Pharmaceuticals 6, 32-53. https://doi.org/10.3390/ph6010032
  32. Qing, G., Ma, L. C., Khorchid, A., Swapna, G. V. T., Mal, T. K., Takayama, M. M., Xia, B., Phadtare, S., Ke, H., Acton, T., Montelione, G. T., Ikura, M. and Inouye, M. 2004. Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol. 22, 877-882. https://doi.org/10.1038/nbt984
  33. Rinas, U., Tsai, L. B., Lyons, D., Fox, G. M., Stearns, G., Fieschko, J., Fenton, D. and Bailey, J. E. 1992. Cysteine to serine substitutions in basic fibroblast growth factor: effect on inclusion body formation and proteolytic susceptibility during in vitro refolding. Nat. Biotechnol. 10, 435-440. https://doi.org/10.1038/nbt0492-435
  34. Rosano, G. L. and Ceccarelli, E. A. 2014. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 5, 172.
  35. Schwarze, S. R., Ho, A., Vocero-Akbani, A. and Dowdy, S. F. 1999. In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science 285, 1569-1572. https://doi.org/10.1126/science.285.5433.1569
  36. Schwarze, S. R., Hruska, K. A. and Dowdy, S. F. 2000. Protein transduction: Unrestricted delivery into all cells? Trends Cell Biol. 10, 290-295.
  37. Sheng, Z., Chang, S. B. and Chirico, W. J. 2003. Expression and purification of a biologically active basic fibroblast growth factor fusion protein. Protein. Expr. Purif. 27, 267-271. https://doi.org/10.1016/S1046-5928(02)00601-0
  38. Song, J. A., Koo, B. K., Chong, S. H., Kwak, J., Ryu, H. B., Nguyen, M. T., Vu, T. T. T., Jeong, B., Kim, S. W. and Choe, H. 2013. Expression and purification of biologically active human FGF2 containing the b'a' domains of human PDI in Escherichia coli. Appl. Biochem. Biotechnol. 170, 67-80. https://doi.org/10.1007/s12010-013-0140-3
  39. Sun, C., Li, Y., Taylor, S. E. and Marston, F. A. O. 2015. Halo Tag is an effective expression and solubilisation fusion partner for a range of fibroblast growth factors. PeerJ 3, e1060. https://doi.org/10.7717/peerj.1060
  40. Taylor, G., Hoare, M., Gray, D. R. and Marston, F. A. O. 1986. Size and density of inclusion bodies. Bio/Technology 4, 553-557.
  41. Wang, J., Hong, A., Ren, J. S., Suna, F. Y., Shia, Y. J., Liua, K., Xiea, Q. L., Daia, Y., Lia, Z. Y. and Chen, Y. 2006. Biochemical properties of C78SC96S rhFGF-2: a double point-mutated rhFGF-2 increases obviously its activity. J. Biotechnol. 121, 442-447.