DOI QR코드

DOI QR Code

NCF Trap이 Cu/Ni/Sn-Ag 미세범프의 Electromigration 특성에 미치는 영향 분석

Effect of NCF Trap on Electromigration Characteristics of Cu/Ni/Sn-Ag Microbumps

  • 류효동 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 이병록 ((주)스태츠칩팩코리아) ;
  • 김준범 ((주)하나마이크론) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • 투고 : 2018.11.25
  • 심사 : 2018.12.21
  • 발행 : 2018.12.31

초록

Cu/Ni/Sn-Ag 미세범프 접합 공정후 Ni/Sn-Ag접합계면에 잔류한 비전도성 필름(non-conductive film, NCF) trap 형성이 전기적 신뢰성에 미치는 영향을 분석하기 위해 온도 $150^{\circ}C$, 전류밀도 $1.5{\times}10^5A/cm^2$ 조건에서 electromigration (EM) 신뢰성 실험을 진행하였다. EM 신뢰성 실험 결과, NCF trap이 거의 없는 Cu/Ni/Sn-Ag 미세범프가 NCF trap이 형성된 미세범프 보다 약 8배 긴 EM 수명을 보여주고 있다. 저항 변화 및 손상계면에 대한 미세구조 분석결과, Ni/Sn-Ag접합계면에 공정 이슈에 의해 형성된 NCF trap이 Ni-Sn 금속간화합물/Sn-Ag솔더계면에 보이드를 유발하여 EM 원자 확산을 방해하기 때문에 빠른 보이드 성장에 의한 전기적 손상이 일찍 발생하는 것으로 판단된다.

The electromigration (EM) tests were performed at $150^{\circ}C$ with $1.5{\times}10^5A/cm^2$ conditions in order to investigate the effect of non-conductive film (NCF) trap on the electrical reliability of Cu/Ni/Sn-Ag microbumps. The EM failure time of Cu/Ni/Sn-Ag microbump with NCF trap was around 8 times shorter than Cu/Ni/Sn-Ag microbump without NCF trap. From systematic analysis on the electrical resistance and failed interfaces, the trapped NCF-induced voids at the Sn-Ag/Ni-Sn intermetallic compound interface lead to faster EM void growth and earlier open failure.

키워드

MOKRBW_2018_v25n4_83_f0001.png 이미지

Fig. 1. Schematic diagrams of (a) Cu/Ni/Sn-Ag microbumps with and without NCF trap, (b) daisy chain structure for EM test.

MOKRBW_2018_v25n4_83_f0002.png 이미지

Fig. 2. As-bonded cross-sectional SEM images of Cu/Ni/Sn-Ag microbumps (a) with NCF trap and (b) without NCF trap.

MOKRBW_2018_v25n4_83_f0003.png 이미지

Fig. 3. As-bonded SEM image of bottom Cu/Ni surface after solder etching of Cu/Ni/Sn-Ag microbumps with NCF trap.

MOKRBW_2018_v25n4_83_f0004.png 이미지

Fig. 4. Resistance change versus time curve of Cu/Ni/Sn-Ag microbumps for 1.5 × 105 A/cm2 at 150℃: (a)with and without NCF trap, and (b) enlarged graph of Cu/Ni/Sn-Ag microbumps with NCF trap.

MOKRBW_2018_v25n4_83_f0005.png 이미지

Fig. 5. Sequential SEM micrographs of Cu/Ni/Sn-Ag microbumps with NCF trap during current stressing at 150℃ , 1.5 × 105 A/cm2: (a) 10h, (b) 30h, (c) 60h.

MOKRBW_2018_v25n4_83_f0006.png 이미지

Fig. 6. Sequential SEM micrographs of Cu/Ni/Sn-Ag microbumps without NCF tarp during current stressing at 150℃ , 1.5 × 105 A/cm2: (a) 10h, (b) 300h, (c) 600h.

참고문헌

  1. D. W. Kim, R. Vidhya, B. Henderson, U. Ray, S. Q. Gu, W. Zhao, R. Radojcic, and M. Nowak, "Material innovation opportunities for 3D integrated circuits from a wireless application point of view", Proc. 63rd Electronic Components and Technology Conference, Las Vegas (2013).
  2. Y. Liu, N. Tamura, D.W. Kim, S. Q. Gu, and K. N. Tu, "A metastable phase of tin in 3D integrated circuit solder microbumps", Proc. 65th Electronic Components and Technology Conference (ECTC), San Diego, CA (2015).
  3. S. Q. Gu, P. Marchal, M. Facchini, F. Wang, M. Suh, D. Lisk, and M. Nowak, "Stackable Memory of 3D Chip Integration for Mobile Applications", Proc. Int. El. Devices Meet, IEEE, San Francisco (2008).
  4. M. Liebens, J. Slabbekoorn, A. Miller, E. Beyne, M. Stoerring, S. Hiebert, and A. Cross, "Defect earning methodology applied to microbump process at 20 ${\mu}m$ pitch and below", Proc. 29th Annual SEMI Advanced Semiconductor Manufacturing Conference, New York (2018).
  5. J. H. Lee, G. T. Lim, S. T. Yang, M. S. Suh, Q. H. Chung, K. Y. Byun, and Y. B. Park, "Electromigration and Thermomigration Characteristics in Flip Chip Sn-3.5Ag Solder Bump", J. Kor. Inst. Met. & Mater., 46(5), 310 (2008).
  6. V. S. Rao, V. Kripseph, S. W. Yoon, D. Witarsa, and A. A. O. Tay, "Bed of nails-100 microns pitch wafer level interconnections process", Proc. 5th Electronics Packaging Technology Conference(EPTC), Singapore (2004).
  7. S. H. Kim, G. T. Park, B. R. Lee, J. M. Kim, S. H. Yoo, and Y. B. Park, "Effects of PCB Surface Finishes on in-situ Intermetallics Growth and Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints", J. Microelectron. Packag. Soc., 22(2), 47 (2015). https://doi.org/10.6117/kmeps.2015.22.2.047
  8. B. J. Kim, G. T. Lim, Kim, J. D. Kim, K. W. Lee, Y. B. Park, H. Y. Lee, and Y. C. Joo, "Intermetallic Compound Growth and Reliability of Cu Pillar Bumps Under Current Stressing", J. Electron. Mater., 39(10), 1007 (2010). https://doi.org/10.1007/s11664-010-1089-4
  9. B. J. Kim, S. H. Kim, and Y. B. Park, "Intermetallic Compound Growth Characteristics of Cu/Ni/Au/Sn-Ag/Cu Microbump for 3-D IC Packages", J. Microelectron. Packag. Soc., 20(2), 59 (2013). https://doi.org/10.6117/kmeps.2013.20.2.059
  10. H. Peng, and R. W. Johnson, "Underfilling Fine Pitch BGAs", IEEE, T. Electron. Pa. M., 4, 293 (2001).
  11. M. J. Yim, and K. W. Paik, "Design and understanding of anisotropic conductive films (ACFs) for LCD packaging", IEEE Trans. Compon. Packag. Manuf. Technol., Norrkoping (1998).
  12. S. T. Lu, Y. M. Lin, C. C. Chuang, T. H. Chen, and W. H. Chen, "Development of a Novel Compliant-Bump Structure for ACA-Bonded Chip-on-Flex (COF) Interconnects with Ultra-Fine Pitch", IEEE Trans. Compon. Packag. Manuf. Technol., 1, 33 (2011). https://doi.org/10.1109/TCPMT.2010.2101431
  13. D. T. Hsu, H. D. Dim, F. G. Tong, S. Chungpaiboonpatana, C. Davison, and J. M. Adams, "Curing Dinetics and optical cure schedules for underfill materials", Microelectronics Journal, 31, 271 (2000). https://doi.org/10.1016/S0026-2692(99)00143-3
  14. L. K. Teha, E. Antoa, C. C. Wonga, S. G. Mhaisalkara, E. H. Wongb, P. S. Teob, and Z. Chena, "Development and reliability of non-conductive adhesiveflip-chip packages", Thin Solid Films, 462, 446 (2004).
  15. C. Feger, N. LaBianca, M. Gaynes, S. Steen, Z. Liu, R. Peddi, and M. Francis, "The over-bump applied resin wafer-level underfill process: Process, material and reliability", Proc. 59th Electronic Components and Technology Conference (ECTC), San Diego (2004).
  16. K. Honda, T. Enomoto, A. Nagai, and N. Takano, "NCF for wafer lamination process in higher density electronic packages", Proc. 60th Electronic Components and Technology Conference (ECTC), Las Vegas (2010).
  17. S. Kawamoto, M. Yoshida, S. Teraki, and H. Iida, "Effect of NCF design for the assembly of flip chip and reliability", Proc. 62nd Electronic Components and Technology Conference (ECTC), San Diego (2012).
  18. B. G. Kim, S. C. Kim, W. G. Dong, and Y. H. Kim, "The Effect of Fillers in Nonconductive Adhesive on the Reliability of Chip-on-Glass Bonding with Sn/Cu Bumps", J. Jpn. I. Met., 52(11), 2106 (2011).
  19. S. M. Lee B. G. Kim, and Y. H. Kim, "Non-Conductive Adhesive (NCA) Trapping Study in Chip on Glass Joints Fabricated Using Sn Bumps and NCAs", T. Jpn. I. Met., 52(11), 2106 (2011).
  20. S. C. Kim, and Y. H. Kim, "Low temperature chip on film bonding technology for 20um pitch applications", J Mater Sci: Mater Electron., 27, 3658 (2015).
  21. Joint Electron Device Engineering Council, "Guideline for Characterizing Solder Bump Electromigration under Constant Current and Temperature Stress", JEDEC Standard, JEP154, USA (2008).
  22. K. N. Tu, and R. D. Thompson, "Kinetics of interfacial reaction in bimetallic CuSn thin films", Acta Metall., 30(5), 947 (1982). https://doi.org/10.1016/0001-6160(82)90201-2
  23. Henkel Corporation, Loctite underfill material technical data sheet form http://www.underfill.net/wp-content/uploads/2016/02/Loctite-underfill-3505-tds.pdf
  24. W. J. Choi, E. C. C. Yeh, and K. N. Tu, "Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin-film under-bump-metallization", J. Appl. Phys., 94, 5665 (2003). https://doi.org/10.1063/1.1616993
  25. J. H. Lee, G. T. Lim, and Y. B. Park, "Electromigration Characteristics of Flip Chip Sn-3.5Ag Solder Bumps under Highly Accelerated Conditions", J. Korean Phys. Soc., 54(5), 1784 (2009). https://doi.org/10.3938/jkps.54.1784
  26. G. Kim, K. Son, G. T. Park, and Y. B. Park, "Effect of Current Densities on the Electromigration Failure Mechanisms of Flip-Chip Sn-Ag Solder Bump", Korean J. Met. Mater., 55(11), 798 (2017).
  27. J. H. Lee, G. T. Lim, and Y. B. Park, "Size Effect on Electromigration Reliability of Pb-free Flip Chip Solder Bump", Proc. 58th Electronic Components and Technology Conference (ECTC), Lake Buena Vista (2008).
  28. H. Y. Chen, M. F. Ku, and C. Chen, "Effect of under-bumpmetallization structure on electromigration of Sn-Ag solder joints", Adv. Mater. Res-ger., 1, 83 (2012). https://doi.org/10.12989/amr.2012.1.1.083