Fig. 1. Field-emission scanning electron microscopy images of the plasma electrolytic oxidation films formed on Ti-6Al- 4V alloy at 280 V in various electrolytes of (A) 0Mn (1k), (B) 0Mn (10k), (C) 5Mn (1k), (D) 5Mn (10k), (E) 20Mn (1k), and (F) 20Mn (10k).
Fig. 2. X-ray diffractometer patterns of plasma electrolytic oxidation films formed on Ti-6Al-4V alloy: (a) bulk, (b) 0Mn, (c) 5Mn, and (d) 20Mn.
Fig. 3. The variation in Ca/P ratio of the plasma electrolytic oxidation flms formed on Ti-6Al-4V alloy.
Fig. 4. Anodic polarization curves of the plasma electrolytic oxidation films formed on Ti-6Al-4V alloy after performing the potentiodynamic test in 0.9% NaCl solution at 36.5°C±1.0°C.
Fig. 5. EIS data for the plasma electrolytic oxidation films formed on Ti-6Al-4V alloy after performing the alternating-current (AC) impedance test in 0.9% NaCl solution at 36.5°C±1.0°C. (A) Bode phase plot. (B) Bode-frequency plot. msd: measured, cal: calculated.
Fig. 6. Equivalent circuit for the plasma electrolytic oxidation (PEO) film formed on Ti-6Al-4V alloy. (A) Bulk. (B) PEO treated on Ti-6Al-4V alloys.
Fig. 7. Field-emission scanning electron microscopy images of the plasma electrolytic oxidation film formed on Ti-6Al-4V alloy after performing the electrochemical test in 0.9% NaCl solution at 36.5°C±1.0°C: (A) bulk (5k), (B) bulk (10k), (C) 0Mn (5k), (D) 0Mn (10k), (E) 5Mn (5k), (F) 5Mn (10k), (G) 20Mn (5k), and (H) 20Mn (10k).
Fig. 8. Energy-dispersive X-ray spectroscopy results obtained for the plasma electrolytic oxidation film formed on Ti-6Al-4V alloy after performing the electrochemical test in 0.9% NaCl solution at 36.5°C±1.0°C: (A) 5Mn and (B) 20Mn.
Fig. 9. Mapping analysis results for the plasma electrolytic oxidation film formed on Ti-6Al-4V alloy: (A) 5Mn, (B) Ca, (C) P, (D) Mn, (E) 20Mn, (F) Ca, (G) P, and (H) Mn.
Table 1. The electrolyte conditions used for the plasma electrolytic oxidation (PEO) treatment of Ti-6Al-4V alloy
Table 2. The number of pores and pore size obtained from plasma electrolytic oxidation (PEO) films formed on Ti-6Al-4V alloy
Table 3. Energydispersive Xray spectroscopy analysis results for the plasma electrolytic oxidation flms formed on Ti-6Al-4V alloy
Table 4. Electrochemical data obtained from potentiodynamic polarization curves
Table 5. Electrochemical parameters for the plasma electrolytic oxidation flms formed on Ti-6Al-4V alloy from EIS curves
References
- Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans. 2002; 33: 477.
- Saji VS, Choe HC. Nanotechnological applications in tissue and implant engineering. In: Hunter RJ, Preedy VR, eds. Nanomedicine in health and disease. New York: CRC Press; 2011.
- Byeon IS, Lee K, Choe HC, Brantly WA. Surface morphology of Zn-containing hydroxyapatite (Zn-HA) deposited electrochemically on Ti-xNb alloys. Thin Solid Films. 2015; 587: 163-8. https://doi.org/10.1016/j.tsf.2015.01.028
- De Groot K, Geesink R, Klein CP, Serekian P. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res. 1987; 21: 1375-81. https://doi.org/10.1002/jbm.820211203
- Jeong YH, Kim WG, Choe HC. Electrochemical behavior of nano and femtosecond laser textured titanium alloy for implant surface modification. J Nanosci Nanotechnol. 2011; 11: 1581-4. https://doi.org/10.1166/jnn.2011.3404
- Lee K, Jeong YH, Ko YM, Choe HC, Brantley WA. Hydroxyapatite coating on micropore-formed titanium alloy utilizing electrochemical deposition. Thin Solid Films. 2013; 549: 154-8. https://doi.org/10.1016/j.tsf.2013.09.002
- Sohn SH, Jun HK, Kim CS, Kim KN, Chung SM, Shin SW, Ryu JJ, Kim MK. Biological responses in osteoblast-like cell line according to thin layer hydroxyapatite coatings on anodized titanium. J Oral Rehabil. 2006; 33: 898-911. https://doi.org/10.1111/j.1365-2842.2006.01643.x
- Kumari R, Blawert C, Majumdar JD. Microstructures and properties of plasma electrolytic oxidized Ti alloy (Ti-6Al-4V) for bio-implant application. Metall Mater Trans A. 2016; 47: 788-800.
- Yerokhin AL, Nie X, Leyland A, Matthews A. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy. Surf Coat Technol. 2000; 130: 195-206. https://doi.org/10.1016/S0257-8972(00)00719-2
- Saji VS, Choe HC. Electrochemical corrosion behaviour of nanotubular Ti-13Nb-13Zr alloy in Ringer's solution. Corros Sci. 2009; 51: 1658-63. https://doi.org/10.1016/j.corsci.2009.04.013
- Lee K, Choe HC. Effect of the Mg ion containing oxide films on the biocompatibility of plasma electrolytic oxidized Ti-6Al-4V. J Korean Inst Surf Eng. 2016; 49: 135-40. https://doi.org/10.5695/JKISE.2016.49.2.135
- Xu L, Yu G, Zhang E, Pan F, Yang K. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J Biomed Mater Res A. 2007; 83: 703-11.
-
Zhang Z, Gu B, Zhu W, Zhu L. Integrin-mediated osteoblastic adhesion on a porous manganeseincorporated
$TiO_{2}$ coating prepared by plasma electrolytic oxidation. Exp Ther Med. 2013; 6: 707-14. https://doi.org/10.3892/etm.2013.1204 - Park JW, Kim YJ, Jang JH. Surface characteristics and in vitro biocompatibility of a manganesecontaining titanium oxide surface. Appl Surf Sci 2011; 258: 977-85. https://doi.org/10.1016/j.apsusc.2011.09.053
-
Gyorgy E, Toricelli P, Socol G, Iliescu M, Mayer I, Mihailescu IN, Bigi A, Werckman J. Biocompatible
$Mn^{2+}$ -doped carbonated hydroxyapatite thin films grown by pulsed laser deposition. J Biomed Mater Res A. 2004; 71: 353-8. - Paluszkiewicz C, Slosarczyk A, Pijocha D, Sitarz M, Bucko M, Zima A, Chroscicka A, Lewandowska- Szumie M. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. J Mol Struct. 2010; 976: 301-9. https://doi.org/10.1016/j.molstruc.2010.04.001
- Mayer I, Jacobsohn O, Niazov T, Werckmann J, Iliescu M, Richard-Plouet M, Burghaus O, Reinen D. Manganese in precipitated hydroxyapatites. Eur J Inorg Chem. 2003; 2003: 1445-51. https://doi.org/10.1002/ejic.200390188
- Huang Y, Ding Q, Han S, Yan Y, Pang X. Characterisation, corrosion resistance and in vitro bioactivity of manganese-doped hydroxyapatite films electrodeposited on titanium. J Mater Sci Mater Med. 2013; 24: 1853-64. https://doi.org/10.1007/s10856-013-4955-9
-
Barik RC, Wharton JA, Wood RJK, Stokes KR, Jones RL. Corrosion, erosion and erosion-corrosion performance of plasma electrolytic oxidation (PEO) deposited
$Al_{2}O_{3}$ coatings. Surf Coat Technol. 2005; 199: 158-67. https://doi.org/10.1016/j.surfcoat.2004.09.038 - Durdu S, Deniz OF, Kutbay I, Usta M. Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation. J Alloy Compd. 2013; 551: 422-9. https://doi.org/10.1016/j.jallcom.2012.11.024
- Huang P, Xu K, Han Y. Formation mechanism of biomedical apatite coatings on porous titania layer. J Mater Sci Mater Med. 2007; 18: 457-63.
- Pandya HM, Anitha P. Influence of manganese on the synthesis of nano hydroxyapatite by wet chemical method for in vitro applications. AJPCT. 2015; 3: 394-402.
- Goloshchapov DL, Kashkarov VM, Rumyantseva NA, Seredin PV, Lenshin AS, Agapov BL, Domashevskaya EP. Synthesis of nanocrystalline hydroxyapatite by precipitation using hen's eggshell. Ceramics Int. 2013; 39: 4539-49. https://doi.org/10.1016/j.ceramint.2012.11.050
- Mostovshchikova EV, Naumov SV, Zainullina RI, Bebenin NG, Arbuzova TI, Solin NI. Electron doped CaMnO3: Mn-site substitution versus Casite substitution. Solid State Phenom. 2015; 233-234: 169-72. https://doi.org/10.4028/www.scientific.net/SSP.233-234.169
- Afshari FT, Kwok JC, Andrews MR, Blits B, Martin KR, Faissner A, Ffrench-Constant C, Fawcett JW. Integrin activation or alpha 9 expression allows retinal pigmented epithelial cell adhesion on Bruch's membrane in wet age-related macular degeneration. Brain. 2010; 133: 448-64. https://doi.org/10.1093/brain/awp319
- Rabinovitch M, DeStefano MJ. Manganese stimulates adhesion and spreading of mouse sarcoma I ascites cells. J Cell Biol. 1973; 59: 165-76. https://doi.org/10.1083/jcb.59.1.165
- Fujitani W, Hamada Y, Kawaguchi N, Mori S, Daito K, Uchinaka A, Matsumoto T, Kojima Y, Daito M, Nakano T, Matsuura N. Synthesis of hydroxyapatite contining manganese and its evaluation of biocompatibility. Nano Biomed. 2010; 2: 37-46.
-
Bracci B, Torricelli P, Panzavolta S, Boanini E, Giardino R, Bigi A. Effect of
$Mg^{2+}$ ,$Sr^{2+}$ , and$Mn^{2+}$ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem. 2009; 103: 1666-74. https://doi.org/10.1016/j.jinorgbio.2009.09.009 -
Ataherian F, Wu NL. Long-term charge/discharge cycling stability of
$MnO_{2}$ aqueous supercapacitor under positive polarization. J Electrochem Soc. 2011; 158: 422-7. https://doi.org/10.1149/1.3555469 - Jeong YH, Choe HC, Brantly WA. Electrochemical and surface behavior of hydyroxyapatite/Ti film on nanotubular Ti-35Nb-xZr alloys. Appl Surf Sci. 2012; 258: 2129-36. https://doi.org/10.1016/j.apsusc.2011.03.086
- Franks W, Schenker I, Schmutz P, Hierlemann A. Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng. 2005; 52: 1295-302. https://doi.org/10.1109/TBME.2005.847523
- Walsh FC, Low CTJ, Wood RJK, Stevens KT, Archer J, Poeton AR, Ryder A. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Trans IMF. 2009; 87: 122-35. https://doi.org/10.1179/174591908X372482
- Dehnavi V, Shoesmith DW, Luan BL, Yari M, Liu XY, Sohrab R. Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy: the effect of the PEO process stage. Mater Chem Phys. 2015; 161: 49-58. https://doi.org/10.1016/j.matchemphys.2015.04.058
- Matykina E, Arrabal R, Skeldon P, Thompson GE. Investigation of the growth processes of coatings formed by AC plasma electrolytic oxidation of aluminium. Electrochim Acta. 2009; 54: 6767-78. https://doi.org/10.1016/j.electacta.2009.06.088
- Gonzalez JEG, Mirza-Rosca JC. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J Electroanal Chem. 1999; 471: 109-15. https://doi.org/10.1016/S0022-0728(99)00260-0
- Zhu S, Liu Z, Qu R, Wang L, Li Q, Guan S. Effect of rare earth and Mn elements on the corrosion behavior of extruded AZ61 system in 3.5 wt% NaCl solution and salt spray test. J Magnes Alloys. 2013; 1: 249-55. https://doi.org/10.1016/j.jma.2013.10.003