Fig. 1. Dimensions of test specimen in mm.
Fig. 1. Dimensions of test specimen in mm.
Fig. 2. Basic principle of SLM.
Fig. 2. Basic principle of SLM.
Fig. 3. Schematic view of a UNSM process.
Fig. 3. Schematic view of a UNSM process.
Fig. 4. Schematic view of a reciprocating wear tester.
Fig. 4. Schematic view of a reciprocating wear tester.
Fig. 5. Comparison in surface roughness and hardness before and after UNSM treatment.
Fig. 5. Comparison in surface roughness and hardness before and after UNSM treatment.
Fig. 6. Cross-sectional SEM morphologies of the untreated (a) and UNSM-treated (b) specimens.
Fig. 6. Cross-sectional SEM morphologies of the untreated (a) and UNSM-treated (b) specimens.
Fig. 7. SEM images of the as-received and polished surfaces of the untreated (a and c) and UNSM-treated (b and d) specimens.
Fig. 7. SEM images of the as-received and polished surfaces of the untreated (a and c) and UNSM-treated (b and d) specimens.
Fig. 8. EDX images of the as-received and polished surfaces of the untreated (a1 and c1) and UNSM-treated (b1 and d1) specimens.
Fig. 8. EDX images of the as-received and polished surfaces of the untreated (a1 and c1) and UNSM-treated (b1 and d1) specimens.
Fig. 9. Comparison in XRD patterns before and after UNSM treatment.
Fig. 9. Comparison in XRD patterns before and after UNSM treatment.
Fig. 10. Friction coefficient and wear track profiles of the as-received and polished surfaces of the untreated and UNSM-treated specimens.
Fig. 10. Friction coefficient and wear track profiles of the as-received and polished surfaces of the untreated and UNSM-treated specimens.
Fig. 11. SEM images showing wear track of the as-received and polished surfaces of the untreated (a and c) and UNSM-treated (b and d) specimens.
Fig. 11. SEM images showing wear track of the as-received and polished surfaces of the untreated (a and c) and UNSM-treated (b and d) specimens.
Fig. 12. EDX images of the wear track of the as-received and polished surfaces of the untreated (a1, a2, c1, c2) and UNSM-treated (b1, b2, d1, d2) specimens.
Fig. 12. EDX images of the wear track of the as-received and polished surfaces of the untreated (a1, a2, c1, c2) and UNSM-treated (b1, b2, d1, d2) specimens.
Table 1. Physical properties of STS 316L powder
Table 1. Physical properties of STS 316L powder
Table 2. Chemical composition of STS 316L in wt. %
Table 2. Chemical composition of STS 316L in wt. %
Table 3. Mechanical properties of STS 316L
Table 3. Mechanical properties of STS 316L
Table 4. SLM process conditions
Table 4. SLM process conditions
Table 5. UNSM treatment parameters
Table 5. UNSM treatment parameters
Table 6. Tribo-test conditions
Table 6. Tribo-test conditions
Table 7. Surface measurement conditions
Table 7. Surface measurement conditions
참고문헌
- Miranda, G., Faria, S., Bartolomeu, F., Pinto, E., Mederia, S., Mateus, A., Carreira, P., Alves, N., Silva, F. S., Carvalho, O., "Predictive models for physical and mechanical properties of 316L stainless steel produced by selective laser melting", Mater. Sci. Eng.: A, doi:10.1016/j.msea.2016.01.028, 2016.
- Bartolomeu, F., Faria, S., Carvalho, O., Pinto, E., Alves, N., Silva, F. S., Miranda, G., Silva, F. S., Carvalho, O., "Predictive models for physical and mechanical properties of Ti6Al4V produced by Selective Laser Melting", Mater. Sci. Eng.: A, doi:10.1016/j.msea.2016.03.113, 2016.
- Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., Uui, D., "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges", Composites Part B, doi:10.1016/j.compositesb.2018.02.012, 2008.
- Sun, Z., Tan, X., Tor, S. B., Chua, C. K.,"Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting", NPG Asia Mater., Vol. 10, pp. 127-136, 2018. https://doi.org/10.1038/s41427-018-0018-5
- Frazier, W. E., "Metal additive manufacturing: A review", J. Mater. Eng. Perform., Vol. 23, pp. 1917-1928, 2014. https://doi.org/10.1007/s11665-014-0958-z
-
Mumtaz, K. A., Erasenthiran, P., Hopkinson, N., "High density selective laser melting of Waspaloy
$^{(R)}$ ", J. Mater. Process. Technol., doi:10.1016/j.jmatprotec.2007.04.117, 2008. - Martin, J. H., Yahata, B. D., Hundley, J. M., Mayer, J. A., Schaedler, T. A., Pollock, T. M., "3D printing of high-strength aluminium alloys", Nature, Vol. 549, pp. 365-369, 2017. https://doi.org/10.1038/nature23894
- Haase, C., Bultmann, J., Hof, J., Ziegler, S., Bremen, S., Hinke, C., Schwedt, A., Prahl, U., Bleck, W., "Exploiting process-related advantages of selective laser melting for the production of high-manganese steel", Materials, doi:10.3390/ma100100562, 2017.
- Bartolomeu, F., Buciumeanu, M., Pinto, E., Alves, N., Carvalho, O., Silva, F. S., Miranda, G., "316L stainless steel mechanical and tribological behavior - A comparison between selective laser melting, hot pressing and conventional casting", Addit. Manuf., doi:10.1016/j.addma.2017.05.007, 2017.
- Pyoun, Y. S., Park, J. Y., Cho, I. H., Kim, C. S., Suh, C. M., "A study on the ultrasonic nano crystal modification (UNSM) technology and it's application", Transactions of KSME A, doi:10.3795/KSME-A.2009.33.3.190, 2009.
- Zhu, Y., Zou, J., Chen, X., Yang, H., "Tribology of selective laser melting processed parts: Stainless steel 316L under lubricated conditions", Wear, doi:10.1016/j.wear.2016.01.004, 2016.
- Liu, J., Suslov, S., Li, S., Qin, H., Ren, Z. Ma, C. Wang, G. X., Doll, G. L., Cong, H., Dong, Y., Ye, C., "Effects of ultrasonic nanocrystal surface modification on the thermal oxidation behavior of Ti6Al4V", Surf. Coat. Technol., doi:10.1016/j.surfcoat.2017.04.051, 2017.
- Amanov, A., Karimbaev, R., Maleki, E., Unal, O., Pyun, Y. S., Amanov, T., "Effect of combined shot peening and ultrasonic nanocrystal surface modification processes on the fatigue performance of AISI 304", Surf. Coat. Technol., doi:10.1016/j.surfcoat.2018.11.100, 2018.
- Amanov, A., Lee, S. W., Pyun, Y. S., "Low friction and high strength of 316L stainless steel tubing for biomedical applications", Mater. Sci. Eng.: C, doi:10.1016/j.msec.2016.10.005, 2017.
- Amanov, A., Pyun, Y. S., Kim, J. H., Sasaki, S., "The usability and preliminary effectiveness of ultrasonic nanocrystalline surface modification technique on surface properties of silicon carbide", Appl. Surf. Sci., doi:10.1016/j.apsusc.2014.05.089, 2014.
- Gwidon, W., Engineering Tribology, 3nd Edition, Chap. 8, pp. 399, Butterworth-Heinemann, Oxford, UK, 2005(ISBN 9780750678360).
피인용 문헌
- 에너지 제어 용착을 이용한 스테인리스 316L의 적층 특성 및 기계적 물성 평가 vol.20, pp.6, 2018, https://doi.org/10.14775/ksmpe.2021.20.06.059