DOI QR코드

DOI QR Code

Suitability of Migration Testing for Food Packaging Materials Using Tenax®

Tenax®를 이용한 식품포장재의 용출 실험의 적합성

  • Kim, Hyeong-Jun (Department of Food Processing and Distribution, Gangneung-Wonju National University) ;
  • Bang, Dae Young (Lotte R&D center) ;
  • Kim, Min Ho (Lotte R&D center) ;
  • Lee, Keun Taik (Department of Food Processing and Distribution, Gangneung-Wonju National University)
  • 김형준 (강릉원주대학교 식품가공유통학과) ;
  • 방대영 ((주) 롯데 중앙연구소) ;
  • 김민호 ((주) 롯데 중앙연구소) ;
  • 이근택 (강릉원주대학교 식품가공유통학과)
  • Received : 2018.08.08
  • Accepted : 2018.12.14
  • Published : 2018.12.31

Abstract

This study aimed at examining the suitability of $Tenax^{(R)}$ for the migration testing of food packaging materials, which is currently approved in the EU as a dry food simulant. The results are used as a basis to examine the feasibility of introducing $Tenax^{(R)}$ to Korean regulation. The OMVs of test specimen into various solvents (diethyl ether, ethanol, pentane, and acetone) after exposure to $100^{\circ}C$ for 1 hr were compared. Diethyl ether showed the highest OMV ($1.33mg/dm^2$) among the solvents tested. When the tests were conducted with different amounts of $Tenax^{(R)}$ of 2, 4, or 8 g per specimen, the OMVs were 0.75, 1.33 and $1.40mg/dm^2$, respectively. The OMV obtained with a closed system after wrapping with aluminum foil showed a significantly higher OMV ($1.61mg/dm^2$) than that without aluminum wrapping ($1.318mg/dm^2w$) and an open system without lid ($1.06mg/dm^2$). The specific migration rates of surrogates spiked in the polyethylene test film and paper samples into $Tenax^{(R)}$ were compared with those into liquid food simulants including 95% ethanol and n-heptane, and actual foods such as starch, skim milk, and sugar. In general, the specific migration levels of surrogates into $Tenax^{(R)}$ were similar compared with n-heptane, however those were significantly higher than into actual foods. These results suggest that $Tenax^{(R)}$ may be used as a food simulant for the long-term preservation of dried foods and paper products. However, more studies need to be conducted to investigate the factors influencing the migration into $Tenax^{(R)}$, such as the types of foods and packaging materials tested, migration conditions, and surrogates properties etc.

국내 및 EU의 이행실험 방법에 따라 장기보관 조건 및 고온 가열을 가정한 실험조건을 설정하여 총 이행량 및 특정 이행량 실험을 통해 EU에서 종이 포장재 및 고체시뮬란트에 적용되고 있는 Tenax®의 적합성 및 국내 도입 가능성을 검토하였다. 종이와 PE 시료를 대상으로 surrogates를 각각 10종, 5종씩 선정하여 표준시료를 제작하였다. $Tenax^{(R)}$를 이용한 LDPE 필름 시료에서의 총이행량 실험 결과 EU에서 현재 고체 시뮬란트용 추출용매로 공식 사용 중인 에테르로의 추출량이 $1.318mg/dm^2$로서 다른 용매들에서보다 유의적으로 추출 능력이 뛰어남을 확인할 수 있었다. 또한 접촉시간이 길어질수록, 그리고 온도가 높아질수록 총 이행량이 증가하는 경향을 보였다. $Tenax^{(R)}$의 사용량 검토 실험에서는 EU의 $Tenax^{(R)}$ 실험 방법에 제시된 $4mg/dm^2$가 적합한 양임을 확인할 수 있었다. 또한, petri dish의 밀폐 여부에 따른 총이행량 실험 결과 $Tenax^{(R)}$를 이용한 총 이행량 실험시 petri dish를 알루미늄 필름으로 충분히 밀봉하는 방법이 가장 우수한 결과를 나타냄을 확인할 수 있었다. $Tenax^{(R)}$를 이용한 특정 이행량 실험의 적합성 실험결과, 필름과 종이제시료에서의 시뮬란트 별 surrogates의 특정 이행량은 상이한 경향을 나타냈는데 이는 각 물질의 흡착성, 용해도, 분산성 등 다양한 특성에 좌우된 것으로 판단된다. 일반적으로 n-heptane은 $Tenax^{(R)}$와 일부 surrogates에서 유사한 이행량 수준을 보였으며, $Tenax^{(R)}$가 실제 식품에서의 보다 유의적으로 높은 수준의 특정 이행량 값이 나타났다. 이러한 결과들을 감안하면 $Tenax^{(R)}$가 전분, 탈지분유, 설탕과 같은 장기보존 건조 식품류 및 종이제에 대한 고체 시뮬란트로 사용될 수 있는 가능성이 있다고 사료되었다. 그러나, 그러나, 본 연구는 종이제와 PE 필름, 그리고 특정 두께의 시료를 대상으로 제한적인 실험 조건하에서 이루어진 결과이므로, 최종적으로 $Tenax^{(R)}$를 국내에서 액체 시뮬란트를 대체하기 위해서는 보다 다양한 식품류, 이행 조건, 포장재질, 그리고 상이한 물리적 특성을 지닌 surrogates에 대한 특정 이행 양상을 조사하는 연구들이 수행될 필요성이 요구된다.

Keywords

References

  1. Nerin, C., Alfaro, P., Aznar, M. and Domeno, C. 2013. The challenge of identifying non-intentionally added substances from food packaging materials: A review. Analytica Chimica Acta 775: 14-24. https://doi.org/10.1016/j.aca.2013.02.028
  2. Lee, C. S., Lee, K. T., and Lee, K. H. 1997. Migration of additives from domestic plastic food contact materials and application of alternative fatty food simulant. J. Fd. Hyg. Safety 12: 132-140.
  3. Lee, K. T. and Lee, C. S. 1999. Comparison of the current migration testing regulations for plastic containers and packaging materials in EU, USA and Korea or Japan. Korean J. Packag. Sci. Tech. 5: 42-58.
  4. Aznar, M., Vera, P., Canellas, E., Nerin, C., Mercea, P., and Stormer, A. 2011. Composition of the adhesives used in food packaging multilayer materials and migration studies from packaging to food. J. Mater. Chem. 21: 4358-4370. https://doi.org/10.1039/c0jm04136j
  5. Nerin, C., Contin, E., and Asensio, E. 2007. Kinetic migration studies using porapak as solid-food simulant to assess the safety of paper and board as food-packaging materials. Anal. Bioanal Chem. 387: 2283-2288. https://doi.org/10.1007/s00216-006-1080-3
  6. Lin, Q. B., Wang, T. J., Song, H., and Wang, R. Z. 2011. Kinetic migration of isothiazolinone biocides from paper packaging to tenax and porapak. Food Addit. Contam. 28: 1294-1301. https://doi.org/10.1080/19440049.2011.584071
  7. EC (European Commission). Commission Directive 97/48/ EC of 29 July 1997 amending for the second time Council Directive 82/71 1/EEC laying down the basic rules necessary for testing migration of the constituents of plastic materials and articles intended to come into contact with foodstuffs. No L 222/10.
  8. Triantafyllou, V. I., Akrida-Demertzi, K., and Demertzis, P. G. 2002. Migration studies from recycled paper packaging materials: Development of an analytical method for rapid testing. Analytica Chimica Acta 467: 253-260. https://doi.org/10.1016/S0003-2670(02)00189-7
  9. Nerin, C. and Asensio, E. 2007. Migration of organic compounds from a multilayer plastic-paper material intended for food packaging. Analytical and Bioanalytical Chemistry. 389: 589-596. https://doi.org/10.1007/s00216-007-1462-1
  10. Van Den Houwe, K., Evrard, K. C., Van Loco, J., Lynen, F., and Van Hoeck, E. 2016. Migration of photoinitiators from cardboard into dry food: Evaluation of $Tenax^{(R)}$ as a food simulant. Food Addit. Contam. 33: 913-920. https://doi.org/10.1080/19440049.2016.1179562
  11. Aurela, B., Kulmala, H., and Soederhjelm, L. 1999. Phthalates in paper and board packaging and their migration into $Tenax^{(R)}$ and sugar. Food Addit. Contam. 16: 571-577. https://doi.org/10.1080/026520399283713
  12. Aurela, B., Kulmala, H., and Soederhjelm, L. 2001. Investigation of migration from paper and board into food-development of methods for rapid testing. Food Addit. Contam. 16: 571-578.
  13. Suciu, N. A., Tiberto, F., Vasileiadis, S., Lamastra, L., and Trevisan, M. 2013. Recycled paper-paperboard for food contact materials: Contaminants suspected and migration into foods and food simulant. Food Chem. 141: 4146-4151. https://doi.org/10.1016/j.foodchem.2013.07.014
  14. Bradley, E. L., Castle, L., and Speck, D. R. 2015. A Comparison of the migration of 'Spiked' and 'Intrinsic' substances from paper and board into raisins and into $Tenax^{(R)}$ as a food simulant. Packag. Technol. Sci. 28: 509-517. https://doi.org/10.1002/pts.2117
  15. Bradley, E. L., Castle, L., and Speck, D. R. 2014. Model studies of migration from paper and board into fruit and vegetables and into $Tenax^{(R)}$ as a food simulant food addit. Contam. Part A. 31: 1301-1309.
  16. Korean Ministry of Food and Drug Safety. 2018. Standards and Specifications for Articles, Containers and Packages. pp. 104-109.
  17. Summerfield, W. and Cooper, I. 2001. Investigation of migration from paper and board into food-development of methods for rapid testing. Food Addit. Contam. Part A. 18: 77-88. https://doi.org/10.1080/02652030010004674
  18. European commission, technical guidelines for compliance testing-annexes: draft for consultation. Joint Research Center. 249-264. 2014.
  19. EC. 2011. Commission Regulation (EU) No. 10/2011. Official Journal of European Union.
  20. Arvanitoyannis, I. S. and Stratakos, A. C. 2011. Migration from Food Packaging Materials in Technologies of Preservation of Food and Food Packaging (in Greek). Thessaloniki, Hellas (Greece): University Studio Press.
  21. Pocas, M. F., Oliveira, J. C., Pereira, J. R., Brandsch, R., and Hogg, T. 2011. Modelling migration from paper into food stimulant. Food Control 22: 303-312. https://doi.org/10.1016/j.foodcont.2010.07.028
  22. Triantafyllou, V. I., Akrida-Demertzi, K., and Demertzi, P. G. 2005. Determination of partition behavior of organic surrogates between paperboard packaging materials and air. J. Chromatography. A. 1077: 74-79. https://doi.org/10.1016/j.chroma.2005.04.061
  23. Han, W., Yu, Y., Li, N., and Wang, L. 2014. Kinetic migration of 4-cumylphenol and 4-t-butylphenyl salicylate from paper packaging to dry simulant Tenax TA. Chinese J. Chromatography. 32: 1349-1355. https://doi.org/10.3724/SP.J.1123.2014.08031
  24. Aurela, B., Ohra-aho, T., and Soderhjelm, L. 2001. Migration of alkylbenzenes from packaging into food and $Tenax^{(R)}$. Packag. Technol. Sci. 14: 71-78. https://doi.org/10.1002/pts.534
  25. Reinasa J. I., Oliveirabc, J., Pereiraa, F., MachadobM, F., and Pocas. M. F. 2012. Migration of two antioxidants from packaging into a solid food and into $Tenax^{(R)}$. Food Control. 28: 333-337. https://doi.org/10.1016/j.foodcont.2012.05.023
  26. Zurfluh, M., Biedermann, M., and Grob, K. 2013 Simulation of the migration of mineral oil from recycled paperboard into dry foods by $Tenax^{(R)}$. Food Addit. Contam. Part A. 30: 909-918. https://doi.org/10.1080/19440049.2013.790089