Table 4.1. Simulation results for OU models
Table 4.2. Simulation results for GBM models
참고문헌
- Ait-Sahalia, Y. (2002). Maximum-likelihood estimation of discretely-sampled diffusions: a closed-form approximation approach, Econometrica, 70, 223-262. https://doi.org/10.1111/1468-0262.00274
- Applebaum, D. (2004) Levy processes - from probability theory to finance and quantum groups, Notices of the American Mathematical Society, 51, 1336-1347.
- Delattre, M., Genon-Catalot, V., and Samson, A. (2013). Maximum likelihood estimation for stochastic differential equations with random effects, Scandinavian Journal of Statistics, 40, 322-343. https://doi.org/10.1111/j.1467-9469.2012.00813.x
- Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options, Reviews of Financial Studies, 6, 327-343. https://doi.org/10.1093/rfs/6.2.327
- Hurn, A., Jeisman, J., and Lindsay, K., (2007). Seeing the wood for the trees: a critical evaluation of methods to estimate the parameters of stochastic differential equations, Journal of Financial Econometrics, 5, 390-455. https://doi.org/10.1093/jjfinec/nbm009
- Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data, Biometrics, 38, 963-974. https://doi.org/10.2307/2529876
- Lee, Y. D., Song, S., and Lee, E. (2014). The delta expansion for the transition density of diffusion models, Journal of Econometrics, 178, 694-705. https://doi.org/10.1016/j.jeconom.2013.10.008
- Picchini, U., De Gaetano, A., and Ditlevsen, S. (2010). Stochastic differential mixed-effects models, Scandinavian Journal of Statistics, 37, 67-90. https://doi.org/10.1111/j.1467-9469.2009.00665.x
- Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS, Springer-Verlag, New York.