DOI QR코드

DOI QR Code

A novel Method for Blood Typing using Acoustic Streaming

음향적 흐름을 이용한 혈액형 분석을 위한 새로운 방법

  • Choi, Hyunjoo (Department of Medical Sciences, Graduate School of Medicine, Korea University) ;
  • Jang, Woong Sik (Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital) ;
  • Nam, Jeonghun (Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital) ;
  • Lim, Chae Seung (Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital)
  • 최현주 (고려대학교 의과대학 대학원 의과학과) ;
  • 장웅식 (고려대학교 구로병원 진단검사의학과) ;
  • 남정훈 (고려대학교 구로병원 진단검사의학과) ;
  • 임채승 (고려대학교 구로병원 진단검사의학과)
  • Received : 2018.10.01
  • Accepted : 2018.12.03
  • Published : 2018.12.31

Abstract

Accurate blood typing is the crucial factor for safe and successful blood transfusion and plays a very important role in organ transplantation and genetic information of forensic medicine. Microfluidic devices have been developed to overcome the limitations of the conventional blood typing methods. In this study, we demonstrate a Lamb wave-based device for simple blood typing in a sample droplet and we propose new indices for quantitative and accurate blood typing. Using Lamb wave-induced acoustic streaming in the droplet, the blood sample and the reagent can be mixed rapidly and red blood cells start to form clumps, which is agglutination. Based on the recorded image and video, the intensity of transmitted light through the sample droplet is evaluated to determine the blood type. Effect of the concentration of suspended red blood cells was evaluated and we found that 10% concentration of suspended red blood cells was suitable to observe the difference between aggregated and non-aggregated samples. Finally, sample with blood type A could be determined using anti-A reagent in our Lamb wave-based device. Our device enables simple and accurate blood typing, which can be applied to resource-limited environments.

Keywords

OOSCB@_2018_v39n6_250_f0001.png 이미지

그림 1. 혈액형 분석을 위한 램 웨이브 기반 미세유체소자 작동 원리 개략도 및 새로운 평가 지표의 정의 (a) 미세액적 제어를 위한 램 웨이브의 기본 원리를 나타내며 10 μl이하의 소량의 액적을 전극 공정 없이 파를 이용해 제어가 가능하다. (b) 혈액 샘플과 시약 혼합물의 시간에 따른 광 투과량을 Contrast로 나타내었으며 응집에 의한 광 투과량 변화율에 따라 일반화 된 식을 통하여 새로운 혈액형 분석법의 평가 지표를 정의하였다. (c) 램 웨이브로 인한 혼합을 통해 적혈구의 표면의 항원과 시약 속의 항체가 항원-항체 반응을 통해 응집이 일어나는 원리를 설명한 그림이다. Fig. 1. Schematic of Lamb wave-based microfluidic device’s operation principle and definition of novel evaluation index (a) It shows basic principle of lamb wave for micro-liquid control and it is possible to control small amount of droplet of 10μl or less by using wave without electrode process. (b) The light transmittance of the blood sample and the reagent mixture over time was expressed as Contrast. The evaluation index of the novel blood type analysis method was defined through the normalized equation according to the change rate of the light transmission amount by the agglutination. (c) A diagram explaining the principle that the antigen on the surface of erythrocytes and the antibody in the reagent are agglutinated through the antigen-antibody reaction through mixing due to the lamb-wave.

OOSCB@_2018_v39n6_250_f0002.png 이미지

그림 2. 램 웨이브 기반 혈액형 분석 소자 제작 과정 및 실험 셋업. (a) 램 웨이브 기반의 소자는 시료 로딩 부와 전극 부분으로 구성되어 있다. 소수성 코팅을 위한 단면 테잎은 3 mm 지름의 원형 구멍을 갖도록 컷팅 플로터로 제작하였고 제작 된 코팅지를 압전기판 위에 부착시켰다. 이후 전극은 압전 기판의 양 끝에 일정한 너비의 직사각형 형태로 그려 졌다. (b) 실제 실험에 사용 된 램 웨이브 기반의 장치 실험 셋 업 구성그림과 장치의 실제 이미지이다. Fig. 2. Fabrication process of Lamb wave-based blood typing device and Experimental setup. (a) The lamb wave-based device consists of a sample loading part and an electrode part. Sectional tapes for hydrophobic coating were fabricated with cutting plotters to have circular holes with a diameter of 3 mm, and the prepared coated paper was attached onto the piezoelectric substrate. The electrodes were then drawn in rectangular shapes of constant width at both ends of the piezoelectric substrate. (b) Actual image of a device and an experimental set-up schematic of a device based on a lamb wave used in an actual experiment.

OOSCB@_2018_v39n6_250_f0003.png 이미지

그림 3. 적혈구 부유액 농도에 따른 혈액응집반응평가 (a) 적혈구 부유액 농도에 따른 normalized contrast variation (NCV), (b) 적혈구 부유액 농도에 따른 혈액응집완료 시간 (ST) (n = 5). Fig. 3. Evaluation of blood agglutination according to the concentration of suspended red cells. (a) Normalized contrast variation (NCV) and (b) saturation time of blood agglutination depending on the concentration of suspended red cells.

OOSCB@_2018_v39n6_250_f0004.png 이미지

그림 4. (a) 혈액형별 시간에 따른 혈액 응집 이미지 (b) A형과 B형의 혈액 응집 평가 지표 (Contrast variation, CV) 그래프. Fig. 4. (a) Image of Blood agglutination of type A and type B blood sample according to time (b) Contrast variation (CV) of type A and type B blood sample according to time.

References

  1. In Bum Suh, Sook Won Ryu, Yongku Lee, Dae Sung Hr, Chanil Chung, Jun Keun Chang and Chae Seug Lim, "Development of a new blood typing kit using the microfluidics separation technique," Korean J Hematol. vol. 42, no. 4, 2007.
  2. T. Kline, M. Runyon, M. Pothiawala and R. Ismagilov, "ABO, D Blood Typing and Subtyping Using Plug-Based Microfluidics," Analytical Chemistry, vol. 80, no. 16, pp. 6190-6197, 2008. https://doi.org/10.1021/ac800485q
  3. A. Nilghaz, D. Ballerini, L. Guan, L. Li and W. Shen, "Red blood cell transport mechanisms in polyester thread-based blood typing devices," Analytical and Bioanalytical Chemistry, vol. 408, no. 5, pp. 1365-1371, 2015.
  4. H. Ashiba, M. Fujimaki, K. Awazu, T. Tanaka and M. Makishima, "Microfluidic chips for forward blood typing performed with a multichannel waveguide-mode sensor," Sensing and Bio-Sensing Research, vol. 7, pp. 121-126, 2016. https://doi.org/10.1016/j.sbsr.2016.01.012
  5. T. Songjaroen and W. Laiwattanapaisal, "Simultaneous forward and reverse ABO blood group typing using a paper-based device and barcode-like interpretation," Analytica Chimica Acta, vol. 921, pp. 67-76, 2016. https://doi.org/10.1016/j.aca.2016.03.047
  6. N. Yeow, H. McLiesh, L. Guan, W. Shen and G. Garnier, "Paper-based assay for red blood cell antigen typing by the indirect antiglobulin test" Analytical and Bioanalytical Chemistry, vol. 408, no. 19, pp. 5231-5238, 2016. https://doi.org/10.1007/s00216-016-9617-6
  7. H. Zhang, X. Qiu, Y. Zou, Y. Ye, C. Qi, L. Zou, X. Yang, K. Yang, Y. Zhu, Y. Yang, Y. Zhou and Y. Luo, "A dye-assisted paper-based point-of-care assay for fast and reliable blood grouping," Science Translational Medicine, vol. 9, no. 381, pp. eaaf9209, 2017. https://doi.org/10.1126/scitranslmed.aaf9209
  8. A. Rezk, J. Friend and L. Yeo, "Simple, low cost MHz-order acoustomicrofluidics using aluminium foil electrodes," Lab Chip, vol. 14, no. 11, pp. 1802-1805, 2014. https://doi.org/10.1039/C4LC00182F
  9. G. Destgeer, B. Ha, J. Park and H. Sung, "Lamb Wave-Based Acoustic Radiation Force-Driven Particle Ring Formation Inside a Sessile Droplet," Analytical Chemistry, vol. 88, no. 7, pp. 3976-3981, 2016. https://doi.org/10.1021/acs.analchem.6b00213
  10. Amgad R. Rezk and Leslie Y. Yeo, "Lithography-free, crystal-based multiresonant Lamb waves for reconfigurable microparticle manipulation," Journal of Microelectronics, Electronic Components and Materials, vol. 46, no. 4, pp. 176-182, 2016.
  11. R. Shilton, M. Tan, L. Yeo and J. Friend, "Particle concentration and mixing in microdrops driven by focused surface acoustic waves," Journal of Applied Physics, vol. 104, no. 1, pp. 014910, 2008. https://doi.org/10.1063/1.2951467
  12. Leslie Y. Yeo and James R. Friend, "Surface Acoustic Wave Microfluidics," The Annual Review of Fluid Mechanics, vol. 46, pp. 379-406, 2013.
  13. L. Yeo and J. Friend, "Ultrafast microfluidics using surface acoustic waves," Biomicrofluidics, vol. 3, no. 1, pp. 012002, 2009. https://doi.org/10.1063/1.3056040
  14. J. Nam, H. Choi, J. Kim, W. Jang and C. Lim, "Lamb wave-based blood coagulation test," Sensors and Actuators B: Chemical, vol. 263, pp. 190-195, 2018. https://doi.org/10.1016/j.snb.2018.02.115