DOI QR코드

DOI QR Code

중금속 오염이 n형 실리콘 태양전지의 전기적 특성에 미치는 영향에 대한 연구

Influence of Metallic Contamination on Photovoltaic Characteristics of n-type Silicon Solar-cells

  • 김일환 (전자컴퓨터통신공학과, 한양대학교) ;
  • 박준성 (전자컴퓨터통신공학과, 한양대학교) ;
  • 박재근 (전자컴퓨터통신공학과, 한양대학교)
  • Kim, Il-Hwan (Department of Electrics and Computer Engineering, Hanyang University) ;
  • Park, Jun-Seong (Department of Electrics and Computer Engineering, Hanyang University) ;
  • Park, Jea-Gun (Department of Electrics and Computer Engineering, Hanyang University)
  • 투고 : 2017.12.11
  • 심사 : 2018.01.16
  • 발행 : 2018.03.31

초록

The dependency of the photovoltaic performance of p-/n-type silicon solar-cells on the metallic contaminant type (Fe, Cu, and Ni) and concentration was investigated. The minority-carrier recombination lifetime was degraded with increasing metallic contaminant concentration, however, the degradation sensitivity of recombination lifetime was lower at n-type than p-type silicon wafer, which means n-type silicon wafer have an immunity to the effect of metallic contamination. This is because heavy metal ions with positive charge have a much larger capture cross section of electron than hole, so that reaction with electrons occurs much more easily. The power conversion efficiency of n-type solar-cells was degraded by 9.73% when metallic impurities were introduced in the silicon bulk, which is lower degradation compared to p-type solar-cells (15.61% of efficiency degradation). Therefore, n-type silicon solar-cells have a potential to achieve high efficiency of the solar-cell in the future with a merit of immunity against metal contamination.

키워드

참고문헌

  1. P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, M. Lemiti, "Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching", Sol. Energy Mater. Sol. Cells, Vol. 90, pp. 2319-2328, 2006. https://doi.org/10.1016/j.solmat.2006.03.005
  2. U. Jager, S. Mack, C. Wufka, A. Wolf, D. Biro, R. Preu, "Benefit of selective emitters for p-Type silicon solar cells with passivated surfaces", IEEE J. Photovolt., Vol. 3, No. 2, pp. 621-627, 2013. https://doi.org/10.1109/JPHOTOV.2012.2230685
  3. E. Van Kerschaver, G. Beaucarne, "Back-contact solar cells: a review", Prog. Photovolt: Res. Appl., Vol. 14, pp. 107-123, 2006. https://doi.org/10.1002/pip.657
  4. C. Gong, S. Singh, J. Robbelein, N. Posthuma, E. Van Kerschaver, J. Poortmans, R. Mertens, "High efficient n-type back-junction back-contact silicon solar cells with screen-printed al-alloyed emitter and effective emitter passivation study", Prog. Photovolt: Res. Appl., Vol. 19, pp. 781-786, 2011. https://doi.org/10.1002/pip.1035
  5. F. Feldmann, M. Bivour, C. Reichel, M. Hermle, S. W. Glunz, "Passivated rear contacts for high-efficiency n-type Sisolar cells providing high interface passivation quality and excellent transport characteristics", Sol. Energy Mater. Sol. Cells, Vol. 120, pp. 270-274, 2014. https://doi.org/10.1016/j.solmat.2013.09.017
  6. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, "24.7% Record efficiency HIT solar cell on thin silicon wafer", IEEE J. Photovolt., Vol. 4, No. 1, pp. 96-99, 2014. https://doi.org/10.1109/JPHOTOV.2013.2282737
  7. K. Masuko, M. Shigematsu, T. Hashiguchi, D Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto, "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell", IEEE J. Photovolt., Vol. 4, No. 6, pp. 1433-1435, 2014. https://doi.org/10.1109/JPHOTOV.2014.2352151
  8. A. Rehman, S. H. Lee, "Advancements in n-Type base crystalline silicon solar cells and their emergence in the photovoltaic industry", Scientific World Journal 2013, 2013.
  9. D. Macdonald, L. J. Geerligs, "Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon", Appl. Phys. Lett, Vol. 85, pp. 4061-4063, 2004. https://doi.org/10.1063/1.1812833
  10. S. W. Glunz, S. Rein, J. Y. Lee, W. Warta, "Minority carrier lifetime degradation in boron-doped Czochralski silicon", J. Appl. Phys., Vol. 90, pp. 2397-2404, 2001.
  11. J. Schmidt, A. G. Aberle, R. Hezel, "Investigation of carrier lifetime instabilities in Cz-grown silicon", in Proceedings of the 1997 IEEE 26th Photovoltaic Specialists Conference, pp. 13-18, 1997.
  12. J. Schmidt, K. Bothe, "Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon", Phys. Rev. B, Vol. 69, pp. 024107, 2004. https://doi.org/10.1103/PhysRevB.69.024107
  13. K. Graff, Metal impurities in silicon-device fabrication, Springer Science & Business Media, 2013.
  14. A. A. Istratov, E. R. Weber, "Electrical properties and recombination activity of copper, nickel and cobalt in silicon", Appl. Phys. A, Vol. 66, pp. 123-136, 1998. https://doi.org/10.1007/s003390050649
  15. A. A. Istratov, H. Hieslmair, E. R. Weber, "Iron and its complexes in silicon", Appl. Phys. A, Vol. 69, pp.13-44, 1999. https://doi.org/10.1007/s003390050968
  16. B. G. Streetman, Solid State Electronic Devices, Pearson Prentice Hall, 2006.
  17. S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, Inc., 2007.