DOI QR코드

DOI QR Code

Estimation of the optimal evapotranspiration by using satellite- and reanalysis model-based evapotranspiration estimations

인공위성과 재분석모델 자료의 다중 증발산 자료를 활용하여 최적 증발산 산정 연구

  • Baik, Jongjin (Center for Built Environment, Sungkyunkwan University) ;
  • Jeong, Jaehwan (Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University) ;
  • Choi, Minha (Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University)
  • 백종진 (성균관대학교 건설환경연구소) ;
  • 정재환 (성균관대학교 수자원전문대학원) ;
  • 최민하 (성균관대학교 수자원전문대학원)
  • Received : 2017.10.30
  • Accepted : 2017.12.21
  • Published : 2018.03.31

Abstract

Accurate estimation of evapotranspiration is mightily important for understanding and analyzing the hydrological cycle. There are various methods for estimating evapotranspiration and each method has its own advantages and limitations. Therefore, it is necessary to develop an optimal evapotranspiration product by combing different evapotranspiration products. In this study, we developed an optimal evapotranspiration by fusing two satellite- and model-based evapotranspiration estimates, including revised remote sensing-based Penman-Monteith (RS-PM) and Modified Satellite-Based Priestley-Taylor (MS-PT) methods, Global Land Data Assimilation System (GLDAS), and Global Land Evaporation Amsterdam Model (GLEAM). The statistical analysis (i.e., correlation coefficients, index of agreement, MAE, and RMSE) of combined evapotranspiration product showed to be improved compared to the individual model results. After confirming the overall results, in future studies, advanced data fusion techniques will be used to obtained improved results.

수문순환에서 증발산의 정확한 산정은 수문분석 및 이해에 있어서 매우 중요하다. 특히, 증발산을 산정하는 방법은 다양하며, 각각 방법 마다 장단점을 가지고 있다. 그렇기 때문에, 각 다른 방법으로 산전된 결과를 융합하여 최적의 증발산을 산출해야할 필요가 있다. 본 연구에서는 대표적으로 인공위성 기반의 증발산 모델인 revised RS-PM과 MS-PT 방법에서 산출된 증발산과 모델 자료인 Global Land Data Assimilation System (GLDAS)와 Global Land Evaporation Amsterdam Model (GLEAM)자료들을 융합함으로써 최적의 증발산을 산출하고자 하였다. 연구 지역인 청미천과 설마천에서의 플럭스 타워에서 융합된 증발산에 대해서 검증을 실시하였다. 통계학적인 결과(상관계수, 일치도, MAE, RMSE)를 확인하였을 때, 기존의 인공위성과 모델에서 산출되는 증발산 결과에 비해 향상되는 결괄르 나타내었다. 전반적으로 결과를 확인하였을 때, 융합된 자료가 보다 향상된 결과를 보일 수 있을 것이라는 것을 나타내었으며, 추후에는 더 많은 모델을 사용하여 융합함으로써 보다 정확한 결과를 산출 할 수 있을 것으로 기대된다.

Keywords

References

  1. Baek, J., Sur, C., and Choi, M. (2013). "Assessment of outgoing longwave radiation using COMS: Cheongmi and Sulma catchments." Journal of Korea Water Resources Association, Vol. 46, No. 5, pp. 465-476. https://doi.org/10.3741/JKWRA.2013.46.5.465
  2. Baik, J., Park, J., and Choi, M. (2016). "Assessment of actual evapotranspiration using modified satellite-based priestley-taylor algorithm using MODIS products." Journal of Korea Water Resources Association, Vol. 49, No. 11, pp. 903-912. https://doi.org/10.3741/JKWRA.2016.49.11.903
  3. Baik., J., and Choi, M. (2015). "Evaluation of remotely sensed actual evapotranspiration products from COMS and MODIS at two different flux tower sites in Korea." International Journal of Remote Sensing, Vol. 36, No. 1, pp. 375-402. https://doi.org/10.1080/01431161.2014.998349
  4. Bastiaanssen, W. G. M. (2000). "SEBAL-based sensible and latent heat fluxes in the irrigated Gediz basin, Turkey." Journal of Hydrology, Vol. 229, No. 1-2, pp. 87-100. https://doi.org/10.1016/S0022-1694(99)00202-4
  5. Bastiaanssen, W. G. M., Menenti, M. A., Feddes, R. A., and Hollslag, A. A. M. (1998). "A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation." Journal of Hydrology, Vol. 212, No. 13, pp. 198-212.
  6. Byun, K., Liaqat, U. W., and Choi, M. (2014). "Dual-model approaches for evapotranspiration analyses over homo-and heterogeneous land surface conditions." Agricultural and Forest Meteorology, Vol. 197, pp. 169-187. https://doi.org/10.1016/j.agrformet.2014.07.001
  7. Byun, K., Shin, J., Lee, Y., and Choi, M. (2013). "Validation of net radiation measured from fluxtower based on eddy covariance method: case study in Seolmacheon and Cheongmicheon Watersheds." Journal of Korea Water Resources Association, Vol. 46, No. 2, pp. 111-122. https://doi.org/10.3741/JKWRA.2013.46.2.111
  8. Cleugh, H. A., Leuning, R., Mu, Q., and Running, S. W. (2007). "Regional evaporation estimatesfrom flux tower and MODIS satellite data." Remote Sensing of Environment, Vol. 106, No. 3, pp. 285-304. https://doi.org/10.1016/j.rse.2006.07.007
  9. Fisher, J. B., Tu, K. P., and Baldocchi, D. D. (2008). "Global estimates of the land atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites." Remote Sensing of Environment, Vol. 112, No. 3, pp. 901-919. https://doi.org/10.1016/j.rse.2007.06.025
  10. Jeong, S., Jang, K., Kang, S., Kim, J., Kondo, H., Camo, M., Asanuma, J., Saigusa, N., Wang, S., and Han, S. (2009). "Evaluation of MODIS-derived Evapotranspiration at the Flux Tower Sites in East Asia." Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 4, pp. 174-184. https://doi.org/10.5532/KJAFM.2009.11.4.174
  11. Kim, K., Baik, J., Lee, J., Lee, Y., Jung, S., and Choi, M. (2016). "An assessment and analysis of the gap-filling techniques for revising missing data of flux tower based evapotranspiration -FAO-PM, MDV, and Kalman filter-." Journal of the Korean Society of Hazard Mitigation, Vol. 16, No. 6, pp. 95-107. https://doi.org/10.9798/KOSHAM.2016.16.6.95
  12. Lee, Y., Lee, J., Choi, M., and Jung, S. (2015). "Evaluation of MODIS-derived evapotranspiration according to the water budget analysis." Journal of Korea Water Resources Association, Vol. 48, No. 10, pp. 831-843. https://doi.org/10.3741/JKWRA.2015.48.10.831
  13. Miralles, D. G., De Jeu, R. A. M., Gash, J. H. C., Holmes, T. R. H., and Dolman, A. J. (2011). "Magnitude and variability of land evaporation and its components at the global scale." Hydrology and Earth System Sciences, Vol. 15, No. 3, pp. 967-981. https://doi.org/10.5194/hess-15-967-2011
  14. Monteith, J. L. (1965). "Evaporation and the environment." Symposia of the Society for Experimental Biology, Vol. 19, pp. 205-234.
  15. Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W. (2007). "Development of a global evapo-transpiration algorithm based on MODIS and global meteorology data." Remote Sensing of Environment, Vol. 111, No. 4, pp. 519-536. https://doi.org/10.1016/j.rse.2007.04.015
  16. Mu, Q., Zhao, M., and Running, S. W. (2011). "Improvements to a MODIS global terrestrial evapotranspiration algorithm." Remote Sensing of Environment, Vol. 115, No. 8, pp. 1781-1800. https://doi.org/10.1016/j.rse.2011.02.019
  17. Park, J., and Choi, M. (2015). "Estimation of evapotranspiration from ground-based meteorological data and global land data assimilation system (GLDAS)." Stochastic Environmental Research and Risk Assessment, Vol. 29, No. 8, pp. 1963-1992. https://doi.org/10.1007/s00477-014-1004-2
  18. Penman, H. L. (1948). "Natural evaporation from open water, bare soil and grass." Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 193, No. 1032, pp. 120-145.
  19. Priestley, C. H. B., and Taylor, R. J. (1972). "On the assessment of surface heat flux and evap-oration using large-scale parameters." Monthly Weather Review, Vol. 100, No. 2, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  20. Shuttleworth, W. J., and Wallace, J. S. (1985). "Evaporation from sparse crops-an energy combination theory." Quarterly Journal of the Royal Meteorological Society, Vol. 111, No. 469, pp. 839-855. https://doi.org/10.1002/qj.49711146910
  21. Sur, C., Han, S., Lee, J., and Choi, M. (2012). "Estimation of satellite-based spatial evapotranspiration and validation of fluxtower measurements by eddy covariance method." Korean Journal of Remote Sensing, Vol. 28, No. 4, pp. 435-448. https://doi.org/10.7780/kjrs.2012.28.4.7
  22. Taylor, K. E. (2001), "Summarizing multiple aspects of model performance in a single diagram." Journal of Geophysical Research: Atmospheres, Vol. 106, No. D7, pp. 7183-7192. https://doi.org/10.1029/2000JD900719
  23. Wang, K., and Liang, S. (2008). "An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature, and soil moisture." Journal of Hydrometeorology, Vol. 9, No. 4, pp. 712-727. https://doi.org/10.1175/2007JHM911.1
  24. Yao, Y., Liang, S., Cheng, J., Liu, S., Fisher, J. B., Zhang, X., Jia, K., Zhao, X., Qin, Q., Zhao, B., Han, S., Zhou, G., Zhou, G., Li, T., and Zhao, S. (2013). "MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm." Agricultural and Forest Meteorology, Vol. 171-172, pp. 187-202.
  25. Yao, Y., Liang, S., Li, X., Zhang, Y., Chen, J., Jia, K., Zhang, X., Fisher, J., Wang, X., Zhang, L., Xu, J., Shao, C., Posee, G., Li, Y., Magliulo, V., Varlagin, A., Moors, E. J., Boike, J., Macfarlane, C., Kato, T., Buchmann, N., Billesbach, D. P., Berimger, J., Wolf, S., Papuga, S. A., Wohlfahrt, G., Montagnani, L., Ardo, J., Paul-Limoges, E., Emmel, C., Hortnagl, L., Sachs, T., Gruening, C., Gioli, B., Lopez-Ballesteros, A., Steinbrecher, R., and Gielen, B. (2017). "Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method." Journal of Hydrology, Vol. 553, pp. 508-526. https://doi.org/10.1016/j.jhydrol.2017.08.013
  26. Yao, Y., Liang, S., Zhao, S., Zhang, Y., Qin, Q., Cheng, J., Jia, K., Xie, X., Zhang, N., and Liu, M. (2014), "Validation and application of the modified satellite-based priestley-taylor algorithm for mapping terrestrial evapotranspiration." Remote Sensing, Vol. 6, pp. 880-904. https://doi.org/10.3390/rs6010880
  27. Zhu, G., Li, X., Zhang, K., Ding, Z., Han, T., Ma, J., Huang, C., He, J., and Ma, T. (2016). "Multi model ensemble prediction of terrestrial evapotranspiration across north China using Bayesian model averaging." Hydrological Processes, Vol. 30, No. 16, pp. 2861-2879. https://doi.org/10.1002/hyp.10832