DOI QR코드

DOI QR Code

Assessment of future climate change impact on groundwater level behavior in Geum river basin using SWAT

SWAT을 이용한 미래기후변화에 따른 금강유역의 지하수위 거동 평가

  • Lee, Ji Wan (Department of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Jung, Chung Gil (Department of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Kim, Da Rae (Department of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Kim, Seong Joon (Department of Civil, Environmental and Plant Engineering, Konkuk University)
  • 이지완 (건국대학교 공과대학 사회환경플랜트공학과) ;
  • 정충길 (건국대학교 공과대학 사회환경플랜트공학과) ;
  • 김다래 (건국대학교 공과대학 사회환경플랜트공학과) ;
  • 김성준 (건국대학교 공과대학 사회환경플랜트공학과)
  • Received : 2017.11.23
  • Accepted : 2017.12.15
  • Published : 2018.03.31

Abstract

The purpose of this study is to evaluate the groundwater level behavior of Geum river basin ($9,645.5km^2$) under future climate change scenario projection periods (2020s: 2010~2039, 2050s: 2040~2069, 2080s: 2070~2099) using SWAT (Soil and Water Assessment Tool). Before future evaluation, the SWAT was calibrated and validated using 11 years (2005~2015) daily multi-purpose dam inflow at 2 locations (DCD, YDD), ground water level data at 5 locations (JSJS, OCCS, BEMR, CASS, BYBY), and three years (2012~2015) daily multi-function weir inflow at 3 locations (SJW, GJW, BJW). For the two dam inflow and dam storage, the Nash-Sutcliffe efficiency (NSE) was 0.57~0.67 and 0.87~0.94, and the coefficient of determination ($R^2$) was 0.69~0.73 and 0.63~0.73 respectively. For the three weir inflow and storage, the NSE was 0.68~0.70 and 0.94~0.99, and the $R^2$ was 0.83~0.86 and 0.48~0.61 respectively. The average $R^2$ for groundwater level was from 0.53 to 0.61. Under the future temperature increase of $4.3^{\circ}C$ and precipitation increase of 6.9% in 2080s (2070~2099) based on the historical periods (1976~2005) from HadGEM3-RA RCP 8.5 scenario, the future groundwater level shows decrease of -13.0 cm, -5.0 cm, -9.0 cm at 3 upstream locations (JSJS, OCCS, BEMR) and increase of +3.0 cm, +1.0 cm at 2 downstream locations (CASS, BYBY) respectively. The future groundwater level was directly affected by the groundwater recharge by the future seasonal spatial variation of rainfall in the watershed.

본 연구에서는 금강유역($9,645.5km^2$)을 대상으로 SWAT (Soil and Water Assessment Tool)을 이용하여 HadGEM3-RA RCP 4.5와 8.5 기후 변화 시나리오에 따른 미래 기간(2020s: 2010~2039, 2050s: 2040~2069, 2080s: 2070~2099 )의 지하수위 변화를 평가하였다. 이를 위해 SWAT 모형의 검 보정은 11년(2005~2015)동안의 유역내 2개 댐지점(대청댐, 용담댐)의 일별 유입량 및 저수량, 5개 관정지점(JSJS, OCCS, BEMR, CASS, BYBY)의 일단위 지하수위 관측자료, 3년 5개월(2012년 8월~2015년 12월) 동안의 3개 보지점(세종보, 공주보, 백제보)의 일별 유입량 및 저수량 자료를 이용하였다. 2개 댐의 유입량 및 저수량 검보정 결과, Nash-Sutcliffe 모델효율(NSE)은 각각 0.57~0.67, 0.87~0.94, 결정계수($R^2$)는 각각 0.69~0.73, 0.63~0.73의 범위를 보였으며, 3개 보의 유입량 및 저수량의 NSE는 각각 0.68~0.70, 0.94~0.99, $R^2$는 각각 0.83~0.86, 0.48~0.61로 검보정 되었다. 5개 지점의 지하수위에 대한 $R^2$는 0.53~0.61이었다. 유역 전체의 미래 기온은 기준년도(1976~2005) 대비 2080s RCP 8.5 시나리오에서 최고 $4.3^{\circ}C$ 상승하고 강수량은 6.9% 증가하였으며, 미래 지하수위는 5개 지하수위 관측지점 중 금강 상류 3개 지점(JSJS, OCCS, BEMR)에서 각각 -13.0 cm, -5.0 cm, -9.0 cm 감소하였고, 금강 하류 2개 지점(CASS, BYBY)에서는 각각 +3.0 cm, +1.0 증가하였다. 미래 지하수위는 유역 내 강수량의 계절별 공간적 편차에 따른 지하수 충전량의 차이에 기인한 것으로 판단된다.

Keywords

References

  1. Ahn, S. R., Lee, J. W., Jang, S. S., and Kim, S.J. (2016). "Large scale SWAT watershed modeling considering multi-purpose dams and multi-function weirs operation -for Namhan river basin-." Journal of the Korean Society of Agricultural Engineers, Vol. 58. No. 4. pp. 21-35. https://doi.org/10.5389/KSAE.2016.58.4.021
  2. Ahn, S. R., Park, M. J., Park, G. A., and Kim, S. J. (2009). "Assessing future climate change impact on hydrologic components of Gyeongancheon watershed." Journal of Korea Water Resources Association, Vol. 42, No. 1, pp.33-50. https://doi.org/10.3741/JKWRA.2009.42.1.33
  3. Arnold, J. G., Williams, J. R., Srinivasan, R., and King, K. W. (1996). SWAT manual, USDA. Agricultural Research Service and Blackland Research Center, Texas.
  4. Awan, U. K., and Ismaeel, A. (2014). "A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate." Journal of Hydrology, Vol. 519, pp. 1368-1382. https://doi.org/10.1016/j.jhydrol.2014.08.049
  5. Cho, B. W., Yun, U., Lee, B. D., and Ko, K. S. (2012). "Hydrogeological characteristics of the Wangjeon-ri PCWC area, Nonsan-city, with an emphasis on water level variations." The Journal of Engineering Geology, Vol. 22, No. 2, pp. 195-205. https://doi.org/10.9720/kseg.2012.22.2.195
  6. Chung, I. M., and Kim, N. W. (2011). "Method of advancing groundwater management in Korea." Magazine of Korea Water Resources Association, Vol. 44, No. 2, pp. 10-14.
  7. Chung, I. M., Lee, J. W., and Kim, N. W. (2011). "Estimating exploitable groundwater amount in Musimchen wateshed ny using an integrated surface water-groundwater model." The Economic and Environmental Geology, Vol. 44, No. 5, pp. 433-442. https://doi.org/10.9719/EEG.2011.44.5.433
  8. Church, T. M. (1996). "An underground route for the water cycle." Nature, Vol. 380, pp. 579-580. https://doi.org/10.1038/380579a0
  9. Dessu, S. B., and Melesse, A. M. (2013). "Impact and uncertainties of climate change on the hydrology of the Mara river basin, Kenya/Tanzania." Hydrological Processes, Vol. 27, No. 20, pp. 2973-2986. https://doi.org/10.1002/hyp.9434
  10. Fiseha, B. M., Setegn, S. G., Melesse, A. M., Volpi, E., and Fiori, A. (2014). "Impact of climate change on the hydrology of upper Tiber river basin using bias corrected regional climate model." Water Resources Management, Vol. 28. No. 5, pp. 1327-1343. https://doi.org/10.1007/s11269-014-0546-x
  11. Goodarzi, M., Abedi-Koupai, J., Heidarpour, M., and Safavi, H. R. (2016). "Evaluation of the effects of climate change on groundwater recharge using a hybrid method." Water Resources Management, Vol. 30, No. 1, pp. 133-148. https://doi.org/10.1007/s11269-015-1150-4
  12. IPCC (2007). Climate change 2007: synthesis report. Comtribution of working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, R.K Pachauri and A. Reisinger, Eds., IPCC, Geneva, p. 102.
  13. IPCC (2013). Climate change 2013: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, p. 151.
  14. Izady, A., Davary, K., Alizadeh, A., Ziaei, A. N., Akhavan, S., Alipoor, A., and Brusseau, M. L. (2015). "Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor plain, Iran." Hydrogeology Journal, Vol. 23, No. 1, pp. 47-68. https://doi.org/10.1007/s10040-014-1219-9
  15. Jin, G., Shimizu, Y., Onodera, S., Saito, M., and Matsumori, K. (2015). "Evaluation of drought impact on groundwater recharge rate using SWAT and Hydrus models on an agricultural island in western Japan." Proceedings of the International Association of Hydrological Sciences, Vol. 371, p. 143.
  16. Kim, N. W., Chung, I. M., Won. Y. S., and Arnold, J. G. (2008). "Development and application of the integrated SWAT-MODFLOW model." Journal of Hydrology, Vol. 356, No. 1-2, pp. 1-16. https://doi.org/10.1016/j.jhydrol.2008.02.024
  17. Kim, N. W., Kim, Y. J., and Chung, I. M. (2014). "Sensitivity analysis of hydrogeologic parameters by groundwater table fluctuation model in Jeju island." Journal of Korean Society of Civil Engineers, Vol. 34, No. 5, pp. 1409-1420. https://doi.org/10.12652/Ksce.2014.34.5.1409
  18. Kim, S. J., and Choi, H. S. (2000). "Groundwater recharge assessment via grid-based soil moisture route modeling." Journal of Korea Water Resources Association, Vol. 33, No. 1, pp. 61-72.
  19. Kwon, H. J., Lim, H. J., Park, N. S., and Kim, S. J. (2005). "Assessment of available ground water resources based on topographical and soil characteristics in a watershed." Journal of Korean Society of Civil Engineers, Vol. 25, No. 1B, pp. 19-25.
  20. Lee, J. M., Jung, Y. H., Park, Y. S., Kang, H. W., Lim, K. J., and Kim, H. S. (2014). "Assessment of future climate change impact on groundwater recharge, baseflow and sediment in steep sloping watershed." Journal of Wetlands Research, Vol. 16, No. 2, pp. 173-185. https://doi.org/10.17663/JWR.2014.16.2.173
  21. Lee, M. J., and Lee, J. H. (2011). "Coupled model development between groundwater recharge quantity and climate change using GIS." Journal of Korean Association of Geographic Information Studies, Vol. 14, No. 3, pp. 36-51. https://doi.org/10.11108/kagis.2011.14.3.036
  22. Ministry of Land, Infrastructure and Transport (MOLIT) (2014). Groundwater annual report. Sejong-si, Korea.
  23. Ministry of Land, Infrastructure and Transport (MOLIT) (2016). Groundwater annual report. Sejong-si, Korea.
  24. Mkhwanazi, M., Chavez, J. L., and Rambikur, E. H. (2012). "Comparison of large aperture scintillometer and satellite based energy balance models in sensible heat flux and crop evapotranspiration determination." International Journal of Remote Sensing Applications, Vol. 2, No. 1, pp. 24-30.
  25. Nash, J. E., and Sutcliffe, J. V. (1970). "River flow forecasting through conceptual models: Part I. A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  26. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R. (2001). Soil and water assessment tool; the theoretical documentation. U.S Agricultural Research Service, Temple, Texas, pp. 340-367.
  27. Park, J. Y., Jung, H., Jang, C. H., and Kim, S. J. (2014). "Assessing climate change impact on hydrological components of Yongdam dam watershed using RCP emission scenarios and SWAT model." Journal of the Korean Society of Agricultural Engineers, Vol. 56. No. 3. pp. 19-29. https://doi.org/10.5389/KSAE.2014.56.3.019
  28. Pfannerstill, M., Guse, B., and Fohrer, N. (2014). "A multi-storage groundwater concept for the SWAT model to emphasize nonlinear groundwater dynamics in lowland catchments." Hydrological Processes, Vol. 28, No. 22, pp. 5599-5612. https://doi.org/10.1002/hyp.10062
  29. Shirmohammadi, B., Vafakhah, M., Moosavi, V., and Moghaddamnia, A. (2013). "Application of several data-driven techniques for predicting groundwater level." Water Resources Management, Vol. 27, No. 2, pp. 419-432. https://doi.org/10.1007/s11269-012-0194-y
  30. Shrestha, S., Bach, T. V., and Pandey, V. P. (2016). "Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios." Environmental Science & Policy, Vol. 61, pp. 1-13. https://doi.org/10.1016/j.envsci.2016.03.010
  31. Song, S. H., and Choi, K. J. (2012). An appropriate utilization of agricultural water resources of Jeju island with climate change (I). Journal of Soil and Groundwater Environment, Vol. 17, No. 2, pp. 62-70. https://doi.org/10.7857/JSGE.2012.17.2.062
  32. Sun, X., Bernard-Jannin, L., Garneau, C., Volk, M., Arnold, J. G., Srinivasan, R., Sauvage, S., and Sanchez-Perez, J. M. (2016). "Improved simulation of river water and groundwater exchange in an alluvial plain using the SWAT model." Hydrological Processes, Vol. 30, No. 2, pp. 187-202. https://doi.org/10.1002/hyp.10575
  33. Verma, S., Bhattarai, R., Bosch, N. S., Cooke, R. C., Kalita, P. K., and Markus, M. (2015). "Climate change impacts on flow, sediment and nutrient export in a Great Lakes watershed using SWAT." CLEAN-Soil, Air, Water, Vol. 43, No. 11, pp. 1464-1474. https://doi.org/10.1002/clen.201400724
  34. Williams, J. R. (1975). Sediment-yield prediction with universal equation using runoff energy factor. In Present and Prospective Technology for Predicting Sediment Yield and Sources, ARS-S-40, USDA-ARS.