DOI QR코드

DOI QR Code

Identification of vulnerable region susceptible to soil losses by using the relationship between local slope and drainage area in Choyang creek basin, Yanbian China

중국 연변 조양하 유역의 국부경사와 배수면적의 관계를 이용한 토사유실 우심지역 추출

  • Kim, Joo-Cheol (International Water Resources Research Institute, Chungnam National University) ;
  • Cui, Feng Xue (Yanbian Water & Electricity Survey Designing Research Institute) ;
  • Jung, Kwan Sue (Department of Civil Engineering, Chungnam National University)
  • 김주철 (충남대학교 국제수자원연구소) ;
  • 최봉학 (연변수리수전탐사설계연구원) ;
  • 정관수 (충남대학교 토목공학과)
  • Received : 2017.09.25
  • Accepted : 2017.12.15
  • Published : 2018.03.31

Abstract

The main purpose of this study is to suggest a methodology for identifying vulnerable region in Choyang creek basin susceptible to soil losses based on runoff aggregation structure and energy expenditure pattern of natural river basin within the framework of power law distribution. To this end geomorphologic factors of every point in the basin of interest are extracted by using GIS, which define tractive force and stream power as well as drainage area, and then their complementary cumulative distributions are graphically analyzed through fitting them to power law distribution to identify the sensitive points within the basin susceptible to soil losses with respect to scaling regimes of tractive force and stream power. It is observed that the range of vulnerable region by scaling regime of tractive force is much narrower than by scaling regime of stream power. This result seems to be due to the tractive force is a kind of scale dependent factor which does not follow power law distribution and does not adequately reflect energy expenditure pattern of river basins. Therefore, stream power is preferred to be a more reasonable factor for the evaluation of soil losses. The methodology proposed in this study can be validated by visualizing the path of soil losses, which is generated from hill-slope process characterized by local slope, to the valley through fluvial process characterized by drainage area as well as local slope.

본 연구의 주목적은 조양하 유역의 유출응집구조와 에너지소비 양상을 멱함수 법칙분포의 틀 내에서 해석하고 이를 기반으로 토사유실에 민감한 우심지역을 추출하기 위한 방법론을 제시해 보고자 하는 것이다. 이를 위하여 GIS를 기반으로 대상유역 내 지점별 배수면적과 함께 소류력 및 수류력을 정의하는 지형학적 인자를 추출하여 해당 인자들에 대한 여누가 분포의 도해적 해석과 함께 멱함수 법칙분포의 적합을 수행하였으며 소류력과 수류력의 규모별 특성권역을 기반으로 토양우실 우심지역을 추출하여 보았다. 소류력를 기반으로 한 토사유실 우심지역의 경우 수류력을 기반으로 한 결과에 비하여 우심지역의 범위가 매우 좁게 평가되고 있음을 시각적으로 확인할 수 있었다. 이러한 결과는 소류력이 멱함수 법칙분포를 따르지 않는 규모종속성 지형학적 인자이기 때문인 것으로 판단된다. 이에 따라 해당 지형학적 인자는 멱함수 법칙분포의 틀 내에서 자연유역의 에너지 규모를 적절하게 반영하지 못하는 것으로 사료되며 본 연구에서 수류력을 기반으로 제시한 지형학적 인자가 토사유실의 평가를 위해 보다 합리적인 것으로 판단된다. 토사유실 우심지역을 도시해 본 결과 국부경사에 종속적인 사면활동 활성구간에서 발생한 토사가 국부경사와 배수면적에 종속적인 지표유동 활성구간을 통하여 계곡으로 이동하는 경로를 시각적으로 확인할 수 있어 본 연구에서 제시한 방법론의 타당성을 판단할 수 있었다.

Keywords

References

  1. Bak, P. (1996). How nature works. Copernicus/Springer-Verlag, New York.
  2. Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). "Power-law distributions in empirical data." Siam Review, Vol. 51, No. 4, pp. 661-703. https://doi.org/10.1137/070710111
  3. De Vries, H., Becker, T., and Eckhardt, B. (1994). "Power law distribution of discharge in ideal networks." Water Resources Research, Vol. 30, No. 12, pp. 3541-3543. https://doi.org/10.1029/94WR02178
  4. Flint, J. J. (1974). "Stream gradient as a function of order, magnitude, and discharge." Water Resources Research, Vol. 10, No. 5, pp. 969-973. https://doi.org/10.1029/WR010i005p00969
  5. Gartsman, B., and Shekman, E. (2016). "Potential of river network modeling based on GIS technologies and digital elevation model." Russian Meteorology and Hydrology, Vol. 41, No. 1, pp. 63-71. https://doi.org/10.3103/S1068373916010088
  6. Ijjasz-Vasquez, E. J., and Bras, R. L. (1995). "Scaling regimes of local slope versus contributing area in digital elevation models." Geomorphology, Vol. 12, No. 4, pp. 299-311. https://doi.org/10.1016/0169-555X(95)00012-T
  7. Kim, J. C., Choi, B., and Jung, K. (2017). "Analysis of runoff aggregation structure and energy expenditure pattern for Choyang creek basin on the basis of power law distribution." Journal of Korea Water Resources Association, Vol. 50, No. 11, pp. 725-734. https://doi.org/10.3741/JKWRA.2017.50.11.725
  8. Kim, J. C., Kang, H., and Jung, K. (2016). "Analysis of drainage structure for river basin on the basis of power law distribution." Journal of Korea Water Resources Association, Vol. 49, No. 6, pp. 495-507. https://doi.org/10.3741/JKWRA.2016.49.6.495
  9. La Barbera, P., and Roth, G. (1994). "Invariance and scaling properties in the distributions of contributing area and energy in drainage basins." Hydrological Processes, Vol. 8, No. 2, pp. 125-135. https://doi.org/10.1002/hyp.3360080204
  10. Leopold, L.B., and Maddock, T. (1953). The hydraulic geometry of stream channels and some physiographic implications. Geological Survey Professional Paper 252, U.S. Government Printing Office, Washington, D.C.
  11. Mandelbrot, B. B. (1982). The fractal geometry of nature. W.H. Freeman, New York.
  12. Mandelbrot, B. B., and Van Ness, J. W. (1968). "Fractional Brownian motions, fractional noises and applications." Society for Industrial and Applied Mathematics, Vol. 10, No. 4, pp. 427-437.
  13. Maritan, A., Rinaldo, A., Rigon, A., Giacometti, A., and Rodriguez-Iturbe, I. (1996). "Scaling laws for river networks." Physical Review E, Vol. 53, No. 2, pp. 1510-1515.
  14. McNamara, J. P., Ziegler, A. D., Wood, S. H., and Vogler, J. B. (2006). "Channel head locations with respect to geomorphologic thresholds derived from a digital elevation model: a case study in northern Thailand." Forest Ecology and Management, Vol. 224, No. 1-2, pp. 147-156. https://doi.org/10.1016/j.foreco.2005.12.014
  15. Montgomery, D. R., and Dietrich, W. E. (1992). "Channel initiation and the problem of landscape scale." Science, Vol. 255, No. 5046, pp. 826-830. https://doi.org/10.1126/science.255.5046.826
  16. Montgomery, D. R., and Foufoula-Georgiou, E. (1993). "Channel network source representation using digital elevation models." Water Resources Research, Vol. 29, No. 12, 3925-3934. https://doi.org/10.1029/93WR02463
  17. Newman, M. E. J. (2005). "Power laws, Pareto distributions and Zipf's law." Contemporary Physics, Vol. 46, No. 5, pp. 323-351. https://doi.org/10.1080/00107510500052444
  18. Perera, H., and Willgoose, G. (1998). "A physical explanation of the cumulative area distribution curve." Water Resources Research, Vol. 34, No. 5, pp. 1335-1343. https://doi.org/10.1029/98WR00259
  19. Pilgrim, D. H. (1977). "Isochrones of travel time and distribution of flood storage from a tracer study on a small watershed." Water Resources Research, Vol. 13, No. 3, 587-595. https://doi.org/10.1029/WR013i003p00587
  20. Rodriguez-Iturbe, I., Ijjasz-Vasquez, E. J., Bras, R. L., and Tarboton, D. G. (1992). "Power law distributions of discharge, mass, and energy in river basins." Water Resources Research, Vol. 28, No. 4, pp. 1089-1093. https://doi.org/10.1029/91WR03033
  21. Smart, J. S. (1972). "Channel network." Advances in Hydroscience, Vol. 8, pp. 305-346.
  22. Smith, T. R., and Bretherton, F. P. (1972). "Stability and the conservation of mass in drainage basin evolution." Water Resources Research, Vol. 8, No. 6, pp. 1506-1529. https://doi.org/10.1029/WR008i006p01506
  23. Takayasu, H., Nishikawa, I., and Tasaki, H. (1988). "Power-law mass distribution of aggregation systems with injection." Physical Review A, Vol. 37, No. 8, pp. 3110-3117. https://doi.org/10.1103/PhysRevA.37.3110
  24. Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I. (1989). "Scaling and elevation in river networks." Water Resources Research, Vol. 25, No. 9, pp. 309-319.
  25. Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I. (1992). "A physical basis for drainage density." Geomoephology, Vol. 5, No. 1-2, pp. 59-76. https://doi.org/10.1016/0169-555X(92)90058-V
  26. Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I. (1991). "A coupled channel network growth and hillslope evolution model: 1. Theory." Water Resources Research, Vol. 27, No. 7, pp. 1671-1684. https://doi.org/10.1029/91WR00935
  27. Yoon, Y. (2007). Hydrology. Cheongmoongak.