References
- Balakrishnan B, Chandran R, Park SH, Kwon HJ (2016) Delineating citrinin biosynthesis: Ctn-ORF3 dioxygenase-mediated multi-step methyl oxidation precedes a reduction-mediated pyran ring cyclization. Bioorg Med Chem Lett 26: 392-396 https://doi.org/10.1016/j.bmcl.2015.12.001
- Balakrishnan B, Chen CC, Pan TM, Kwon HJ (2014) Mpp7 controls regioselective Knoevenagel condensation during the biosynthesis of Monascus azaphilone pigments. Tetrahedron Lett 55: 1640-1643 https://doi.org/10.1016/j.tetlet.2014.01.090
- Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, Yoon YM, Chen CC, Kwon HJ (2013) Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol 97: 6337-6345 https://doi.org/10.1007/s00253-013-4745-9
- Balakrishnan B, Lim YJ, Hwang SH, Lee DW, Park SH, Kwon HJ (2017a) Selective production of red azaphilone pigments in a Monascus purpureus mppDEG deletion mutant. J Appl Biol Chem 60: 249-256
- Balakrishnan B, Park SH, Kwon HJ (2017b) A reductase gene mppE controls yellow component production in azaphilone polyketide pathway of Monascus. Biotechnol Lett 39: 163-169 https://doi.org/10.1007/s10529-016-2232-y
- Balakrishnan B, Park SH, Kwon HJ (2017c) Inactivation of the oxidase gene mppG results in the selective loss of orange azaphilone pigments in Monascus purpureus. Appl Biol Chem 60: 437-446 https://doi.org/10.1007/s13765-017-0296-6
- Barajas JF, Phelan RM, Schaub AJ, Kliewer JT, Kelly PJ, Jackson DR, Luo R, Keasling JD, Tsai SC (2015) Comprehensive structural and biochemical analysis of the terminal myxalamid reductase domain for the engineered production of primary alcohols. Chem Biol 22: 1018-1029 https://doi.org/10.1016/j.chembiol.2015.06.022
- Bijinu B, Suh JW, Park SH, Kwon HJ (2014) Delineating Monascus azaphilone pigment biosynthesis: oxidoreductive modifications determine the ring cyclization pattern in azaphilone biosynthesis. RSC Adv 4: 59405-59408 https://doi.org/10.1039/C4RA11713A
- Boettger D, Hertweck C (2013) Molecular diversity sculpted by fungal PKS-NRPS hybrids. Chembiochem 13: 28-42
- Chen W, Chen R, Liu Q, He Y, He K, Ding X, Kang L, Guo X, Xie N, Zhou Y, Lu Y, Cox RJ, Molnar I, Li M, Shao Y, Chen F (2017) Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem Sci 8:4917-4925 https://doi.org/10.1039/C7SC00475C
- Chen W, He Y, Zhou Y, Shao Y, Feng Y, Li M, Chen F (2015) Edible flamentous fungi from the species Monascus: Early traditional fermentations, modern molecular biology, and future genomics. Compr Rev Food Sci Food Safety 14: 555-567 https://doi.org/10.1111/1541-4337.12145
- Chiang YM, Oakley BR, Keller NP, Wang CC (2010) Unraveling polyketide synthesis in members of the genus Aspergillus. Appl Microbiol Biotechnol 86: 1719-1736 https://doi.org/10.1007/s00253-010-2525-3
- Cox RJ (2007) Polyketides, proteins and genes in fungi: programmed nanomachines begin to reveal their secrets. Org Biomol Chem 5: 2010-2026 https://doi.org/10.1039/b704420h
- de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16: 839-842 https://doi.org/10.1038/nbt0998-839
- Diaz-Sanchez V, Avalos J, Limon MC (2012) Identification and regulation of fusA, the polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi. Appl Environ Microbiol 78: 7258-7266 https://doi.org/10.1128/AEM.01552-12
- Donzelli B, Krasnoff S, Churchill A, Vandenberg J, Gibson D (2010) Identification of a hybrid PKS-NRPS required for the biosynthesis of NG-391 in Metarhizium robertsii. Curr Genet 56: 151-162 https://doi.org/10.1007/s00294-010-0288-0
- Fisch KM (2013) Biosynthesis of natural products by microbial iterative hybrid PKS-NRPS. RSC Adv 3: 18228-18247 https://doi.org/10.1039/c3ra42661k
- Gelderblom WCA, Thiel PG, Van der Merwe KJ, Marasas WFO, Spies HSC (1983) A mutagen produced by Fusarium moniliforme. Toxicon 21: 467-473 https://doi.org/10.1016/0041-0101(83)90124-1
- Kwon HJ, Balakrishnan B, Kim YK (2016) Some Monascus purpureus genomes lack the monacolin K biosynthesis locus. J Appl Biol Chem 59: 45-47 https://doi.org/10.3839/jabc.2016.009
- Li Y, Weissman KJ, Muller R (2008) Myxochelin biosynthesis: direct evidence for two-and four-electron reduction of a carrier protein-bound thioester. J Am Chem Soc 130: 7554-7555 https://doi.org/10.1021/ja8025278
- Medema MH, Fischbach MA (2015) Computational approaches to natural product discovery. Nat Chem Biol. 11: 639-648 https://doi.org/10.1038/nchembio.1884
- Namiki F, Matsunaga M, Okuda M, Inoue I, Nishi K, Fujita Y, Tsuge T (2001) Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol. Plant-Microbe Interact 14: 580-584 https://doi.org/10.1094/MPMI.2001.14.4.580
- Niehaus EM, Kleigrewe K, Wiemann P, Studt L, Sieber CM, Connolly LR, Freitag M, Guldener U, Tudzynski B, Humpf HU (2013) Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. Chem Biol 20: 1055-1066 https://doi.org/10.1016/j.chembiol.2013.07.004
- Patakova P (2013) Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol 40: 169-181 https://doi.org/10.1007/s10295-012-1216-8
- Redkar RJ, Herzog RW, Singh NK (1998) Transcriptional activation of the Aspergillus nidulans gpdA promoter by osmotic signals. Appl Environ Microbiol 64: 2229-2231
- van der Lee TAJ, Medema MH (2016) Computational strategies for genomebased natural product discovery and engineering in fungi. Fungal Genet Biol 89: 29-36 https://doi.org/10.1016/j.fgb.2016.01.006
- Yin Y, Cai M, Zhou X, Li Z, Zhang Y (2016) Polyketides in Aspergillus terreus: biosynthesis pathway discovery and application. Appl Microbiol Biotechnol 100: 7787-7798 https://doi.org/10.1007/s00253-016-7733-z
- Zabala AO, Xu W, Chooi YH, Tang Y (2012) Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation. Chem Biol 19: 1049-1059 https://doi.org/10.1016/j.chembiol.2012.07.004
Cited by
- Inactivation of the genes involved in histone H3-lysine 4 methylation abates the biosynthesis of pigment azaphilone in Monascus purpureus vol.62, pp.2, 2018, https://doi.org/10.3839/jabc.2019.022