DOI QR코드

DOI QR Code

Production of a hypothetical polyene substance by activating a cryptic fungal PKS-NRPS hybrid gene in Monascus purpureus

홍국Monascus purpureus에서 진균 PKS-NRPS 하이브리드 유전자의 발현 유도를 통한 미지 polyene 화합물의 생성

  • Suh, Jae-Won (Department of Biosciences and Bioinformatics, Myongji University) ;
  • Balakrishnan, Bijinu (Department of Biosciences and Bioinformatics, Myongji University) ;
  • Lim, Yoon Ji (Department of Biosciences and Bioinformatics, Myongji University) ;
  • Lee, Doh Won (Department of Biosciences and Bioinformatics, Myongji University) ;
  • Choi, Jeong Ju (Department of Biosciences and Bioinformatics, Myongji University) ;
  • Park, Si-Hyung (Department of Oriental Medicine Resources and Institute for Traditional Korean Medicine Industry, Mokpo National University) ;
  • Kwon, Hyung-Jin (Department of Biosciences and Bioinformatics, Myongji University)
  • Received : 2018.02.06
  • Accepted : 2018.03.06
  • Published : 2018.03.31

Abstract

Advances in bacterial and fungal genome mining uncover a plethora of cryptic secondary metabolite biosynthetic gene clusters. Guided by the genome information, targeted transcriptional derepression could be employed to determine the product of a cryptic gene cluster and to explore its biological role. Monascus spp. are food grade filamentous fungi popular in eastern Asia and several genome data belong to them are now available. We achieved transcription activation of a cryptic fungal polyketide synthase-nonribosomal peptide synthase gene Mpfus1 in Monascus purpureus ${\Delta}MpPKS5$ by inserting Aspergillus gpdA promoter at the upstream of Mpfus1 through double crossover gene replacement. The gene cluster with Mpfus1 show a high similarity to those for the biosynthesis of conjugated polyene derivatives with 2-pyrrolidone ring and the mycotoxin fusarin is the representative member of this group. The ${\Delta}MpPKS5$ is incapable of producing azaphilone pigment, providing an excellent background to identify chromogenic and UV-absorbing compounds. Activation of Mpfus1 resulted in a yellow hue on mycelia and its methanol extract exhibit a maximum absorption at 365 nm. HPLC analysis of the organic extracts indicated the presence of a variety of yellow compounds in the extract. This implies that the product of MpFus1 is metabolically or chemically unstable. LC-MS analysis guided us to predict the MpFus1 product and to propose that the Mpfus1-containing gene cluster encode the biosynthesis of a desmethyl analogue of fusarin. This study showcases the genome mining in Monascus and the possibility to unveil new biological activities embedded in it.

박테리아와 진균의 유전체 정보 탐색을 통하여 이차대사 생합성을 지정하는 다수의 잠재 유전자군을 찾을 수 있으며, 유전체 정보를 기반으로 특정 유전자의 발현을 활성화하여 잠재 유전자군의 생성물을 추론하고, 해당 물질의 생물학적 기능을 연구하는 것이 가능하다. 동아시아 지역에서 잘 알려진 식용 사상진균 홍국에 대하여 몇 몇 유전체 정보가 공개되어있으며, 본 연구에서는 Monascus purpureus ${\Delta}MpPKS5$ 균주에서 polyketide synthase-nonribosomal peptide synthase 유전자 Mpfus1 상단에 Aspergillus gpdA 프로모터를 삽입하는 방식으로 이 유전자의 발현을 활성화하였다. Mpfus1 유전자군은 2-pyrrolidone/conjugated polyene 구조를 갖는 물질의 생합성 유전자군들과 높은 유사성을 보이며, 이들 화합물 그룹에서 진균 독소인 fusarin이 잘 알려져 있다. ${\Delta}MpPKS5$ 균주는 홍국 azaphilone 색소 생산 능력이 소실된 균주이며 색소 및 자외선 흡수 특성을 보이는 화합물들의 동정에 적절한 균주이다. Mpfus1 활성화는 균사체가 노란색을 띠도록 유도하며, 균사체의 methanol 추출액은 365 nm에서 최대 흡광도를 보임을 확인할 수 있었다. 해당 추출액의 HPLC 분석을 통하여 다수의 화합물들이 포함되어 있음을 확인할 수 있었으며 이를 통하여 MpFus1 효소의 생성물이 대사적, 화학적으로 불안정함을 추론할 수 있다. Mpfus1 활성화 균주 추출물을 LC-MS로 분석하여 MpFus1 생성물의 구조를 유추하여 Mpfus1 유전자군이 fusarin의 탈메틸 유사체 생합성을 지정하는 것으로 제안할 수 있었다. 본 연구는 홍국 균주에서 유전체 기반-미지 화합물 발굴 연구의 예를 제시하고 홍국 균주에서 새로운 생리활성의 동정 가능성을 시사하여 준다.

Keywords

References

  1. Balakrishnan B, Chandran R, Park SH, Kwon HJ (2016) Delineating citrinin biosynthesis: Ctn-ORF3 dioxygenase-mediated multi-step methyl oxidation precedes a reduction-mediated pyran ring cyclization. Bioorg Med Chem Lett 26: 392-396 https://doi.org/10.1016/j.bmcl.2015.12.001
  2. Balakrishnan B, Chen CC, Pan TM, Kwon HJ (2014) Mpp7 controls regioselective Knoevenagel condensation during the biosynthesis of Monascus azaphilone pigments. Tetrahedron Lett 55: 1640-1643 https://doi.org/10.1016/j.tetlet.2014.01.090
  3. Balakrishnan B, Karki S, Chiu SH, Kim HJ, Suh JW, Nam B, Yoon YM, Chen CC, Kwon HJ (2013) Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl Microbiol Biotechnol 97: 6337-6345 https://doi.org/10.1007/s00253-013-4745-9
  4. Balakrishnan B, Lim YJ, Hwang SH, Lee DW, Park SH, Kwon HJ (2017a) Selective production of red azaphilone pigments in a Monascus purpureus mppDEG deletion mutant. J Appl Biol Chem 60: 249-256
  5. Balakrishnan B, Park SH, Kwon HJ (2017b) A reductase gene mppE controls yellow component production in azaphilone polyketide pathway of Monascus. Biotechnol Lett 39: 163-169 https://doi.org/10.1007/s10529-016-2232-y
  6. Balakrishnan B, Park SH, Kwon HJ (2017c) Inactivation of the oxidase gene mppG results in the selective loss of orange azaphilone pigments in Monascus purpureus. Appl Biol Chem 60: 437-446 https://doi.org/10.1007/s13765-017-0296-6
  7. Barajas JF, Phelan RM, Schaub AJ, Kliewer JT, Kelly PJ, Jackson DR, Luo R, Keasling JD, Tsai SC (2015) Comprehensive structural and biochemical analysis of the terminal myxalamid reductase domain for the engineered production of primary alcohols. Chem Biol 22: 1018-1029 https://doi.org/10.1016/j.chembiol.2015.06.022
  8. Bijinu B, Suh JW, Park SH, Kwon HJ (2014) Delineating Monascus azaphilone pigment biosynthesis: oxidoreductive modifications determine the ring cyclization pattern in azaphilone biosynthesis. RSC Adv 4: 59405-59408 https://doi.org/10.1039/C4RA11713A
  9. Boettger D, Hertweck C (2013) Molecular diversity sculpted by fungal PKS-NRPS hybrids. Chembiochem 13: 28-42
  10. Chen W, Chen R, Liu Q, He Y, He K, Ding X, Kang L, Guo X, Xie N, Zhou Y, Lu Y, Cox RJ, Molnar I, Li M, Shao Y, Chen F (2017) Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem Sci 8:4917-4925 https://doi.org/10.1039/C7SC00475C
  11. Chen W, He Y, Zhou Y, Shao Y, Feng Y, Li M, Chen F (2015) Edible flamentous fungi from the species Monascus: Early traditional fermentations, modern molecular biology, and future genomics. Compr Rev Food Sci Food Safety 14: 555-567 https://doi.org/10.1111/1541-4337.12145
  12. Chiang YM, Oakley BR, Keller NP, Wang CC (2010) Unraveling polyketide synthesis in members of the genus Aspergillus. Appl Microbiol Biotechnol 86: 1719-1736 https://doi.org/10.1007/s00253-010-2525-3
  13. Cox RJ (2007) Polyketides, proteins and genes in fungi: programmed nanomachines begin to reveal their secrets. Org Biomol Chem 5: 2010-2026 https://doi.org/10.1039/b704420h
  14. de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16: 839-842 https://doi.org/10.1038/nbt0998-839
  15. Diaz-Sanchez V, Avalos J, Limon MC (2012) Identification and regulation of fusA, the polyketide synthase gene responsible for fusarin production in Fusarium fujikuroi. Appl Environ Microbiol 78: 7258-7266 https://doi.org/10.1128/AEM.01552-12
  16. Donzelli B, Krasnoff S, Churchill A, Vandenberg J, Gibson D (2010) Identification of a hybrid PKS-NRPS required for the biosynthesis of NG-391 in Metarhizium robertsii. Curr Genet 56: 151-162 https://doi.org/10.1007/s00294-010-0288-0
  17. Fisch KM (2013) Biosynthesis of natural products by microbial iterative hybrid PKS-NRPS. RSC Adv 3: 18228-18247 https://doi.org/10.1039/c3ra42661k
  18. Gelderblom WCA, Thiel PG, Van der Merwe KJ, Marasas WFO, Spies HSC (1983) A mutagen produced by Fusarium moniliforme. Toxicon 21: 467-473 https://doi.org/10.1016/0041-0101(83)90124-1
  19. Kwon HJ, Balakrishnan B, Kim YK (2016) Some Monascus purpureus genomes lack the monacolin K biosynthesis locus. J Appl Biol Chem 59: 45-47 https://doi.org/10.3839/jabc.2016.009
  20. Li Y, Weissman KJ, Muller R (2008) Myxochelin biosynthesis: direct evidence for two-and four-electron reduction of a carrier protein-bound thioester. J Am Chem Soc 130: 7554-7555 https://doi.org/10.1021/ja8025278
  21. Medema MH, Fischbach MA (2015) Computational approaches to natural product discovery. Nat Chem Biol. 11: 639-648 https://doi.org/10.1038/nchembio.1884
  22. Namiki F, Matsunaga M, Okuda M, Inoue I, Nishi K, Fujita Y, Tsuge T (2001) Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol. Plant-Microbe Interact 14: 580-584 https://doi.org/10.1094/MPMI.2001.14.4.580
  23. Niehaus EM, Kleigrewe K, Wiemann P, Studt L, Sieber CM, Connolly LR, Freitag M, Guldener U, Tudzynski B, Humpf HU (2013) Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. Chem Biol 20: 1055-1066 https://doi.org/10.1016/j.chembiol.2013.07.004
  24. Patakova P (2013) Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol 40: 169-181 https://doi.org/10.1007/s10295-012-1216-8
  25. Redkar RJ, Herzog RW, Singh NK (1998) Transcriptional activation of the Aspergillus nidulans gpdA promoter by osmotic signals. Appl Environ Microbiol 64: 2229-2231
  26. van der Lee TAJ, Medema MH (2016) Computational strategies for genomebased natural product discovery and engineering in fungi. Fungal Genet Biol 89: 29-36 https://doi.org/10.1016/j.fgb.2016.01.006
  27. Yin Y, Cai M, Zhou X, Li Z, Zhang Y (2016) Polyketides in Aspergillus terreus: biosynthesis pathway discovery and application. Appl Microbiol Biotechnol 100: 7787-7798 https://doi.org/10.1007/s00253-016-7733-z
  28. Zabala AO, Xu W, Chooi YH, Tang Y (2012) Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation. Chem Biol 19: 1049-1059 https://doi.org/10.1016/j.chembiol.2012.07.004

Cited by

  1. Inactivation of the genes involved in histone H3-lysine 4 methylation abates the biosynthesis of pigment azaphilone in Monascus purpureus vol.62, pp.2, 2018, https://doi.org/10.3839/jabc.2019.022