Fig. 1. The decision tree built from the training dataset. The bar at the bottom of the figure indicates the proportion of each class in the leaf node.
Table 1. Details of the features remained after pre-processing.
Table 2. The classification results of the decision tree
Table 3. 14 rules generated from the decision tree.
Table 4. Comparison of the four algorithms
참고문헌
- S. M. Grundy, H. B. Brewer, J. I. Cleeman, S. C. Smith & C. Lenfant. (2004). Definition of metabolic syndrome. Circulation, 109(3), 433-438. DOI : 10.1161/01.CIR.0000111245.75752.C6
- J. Chen et al. (2004). The metabolic syndrome and chronic kidney disease in us adults. Annals of Internal Medicine, 140(3), 167-174. DOI : 10.7326/0003-4819-140-3-200402030-00007
- M. Hamaguchi et al. (2005). The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Annals of Internal Medicine, 143(10), 722-728. DOI : 10.7326/0003-4819-143-10-200511150-00009
- N. Sattar et al. (2003). Metabolic syndrome with and without c-reactive protein as a predictor of coronary heart disease and diabetes in the west of scotland coronary prevention study. Circulation, 108(4), 414-419. DOI : 10.1016/j.accreview.2003.09.016
- K. G. M. Alberti, P. Zimmet & J. Shaw. (2005). The metabolic syndrome-a new worldwide definition. The Lancet, 366(9491), 1059-1062. DOI : 10.1016/S0140-6736(05)67402-8
- S. M. Haffner, S. Lehto, T. Ronnemaa, K. Pyorala & M. Laakso. (1998). Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England Journal of Medicine, 339(4), 229-234. DOI : 10.1056/NEJM199807233390404
- R. Klein. (1995). Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care, 18(2), 258-268. DOI : 10.2337/diacare.18.2.258
- S. Lehto, T. Rönnemaa, K. Pyorala & M. Laakso. (1996). Predictors of stroke in middle-aged patients with non- insulin-dependent diabetes. Stroke, 27(1), 63-68. DOI : 10.1161/01.STR.27.1.63
- D. R. Whiting, L. Guariguata, C. Weil & J. Shaw. (2011). Idf diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94(3), 311-321. DOI : 10.1016/j.diabres.2011.10.029
- N. Sattar et al. (2008). Can metabolic syndrome usefully predict cardiovascular disease and diabetes? outcome data from two prospective studies. The Lancet, 371(9628), 1927-1935. DOI :10.1016/S0140-6736(08)60602-9
- D. D. Waters et al. (2011). Predictors of new-onset diabetes in patients treated with atorvastatin: results from 3 large randomized clinical trials. Journal of the American College of Cardiology, 57(14), 1535-1545. DOI : 10.1016/j.jacc.2010.10.047
- K. Kurotani et al. (2017). Metabolic syndrome components and diabetes incidence according to the presence or absence of impaired fasting glucose: the japan epidemiology collaboration on occupational health study. Journal of Epidemiology, 27(9), 408-412. DOI : 10.1016/j.je.2016.08.015
- M. P. Stern, K. Williams, C. González-Villalpando, K. J. Hunt & S. M. Haffner. (2004). Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care, 27(11), 2676-2681. DOI : 10.2337/diacare.27.11.2676
- H. K. Kim, K. H. Choi, S. W. Lim & H. S. Rhee. (2016). Development of prediction model for prevalence of metabolic syndrome using data mining : korea national health and nutrition examination study. Journal of Digital Convergence, 14(2), 325-332. DOI : 10.14400/JDC.2016.14.2.325
- J. M. Park, J. Y. Lee, J. J. Dong, D. C. Lee & Y. J. Lee. (2016). Association between the triglyceride to high-density lipoprotein cholesterol ratio and insulin resistance in korean adolescents: a nationwide population-based study. Journal of Pediatric Endocrinology and Metabolism, 29(11), 1259-1265. DOI :10.1515/jpem-2016-0244
- J. Y. Oh & S. H. Choi. (2018). An analysis of the characteristics of companies introducing smart factory system using data mining technique. Journal of the Korea Convergence Society, 9(5), 179-189. DOI :10.15207/JKCS.2018.9.5.179
- J. C. Kim, H. I. Jung, H. Yoo & K. Y. Chung. (2018). Sequence mining based manufacturing process using decision model in cognitive factory. Journal of the Korea Convergence Society, 9(3), 53-59. DOI :10.15207/JKCS.2018.9.3.05
- J. H. Ku. (2017). A study of the machine learning model for product faulty prediction in internet of things environment. Journal of Convergence for Information Technology, 7(1), 55-60. DOI :10.22156/CS4SMB.2017.7.1.055
- D. Lavanya & K. U. Rani. (2011). Performance evaluation of decision tree classifiers on medical datasets. International Journal of Computer Applications, 26(4), 1-4. https://doi.org/10.5120/3095-4247
- N. Lavrac. (1999). Selected Techniques for data mining in medicine. Artificial Intelligence in Medicine, 16(1), 3-23. DOI : 10.1016/S0933-3657(98)00062-1
- T. H. Kim et al. (2009). Prevalence of the metabolic syndrome in type 2 diabetic patients. Korean Diabetes Journal, 33(1), 40-47. DOI : 10.4093/kdj.2009.33.1.40
- Z. Lee et al. (1999). Plasma insulin, growth hormone, cortisol, and central obesity among young chinese type 2 diabetic patients. Diabetes Care, 22(9), 1450-1457. DOI : 10.2337/diacare.22.9.1450
- T. Siddiquee et al. (2015). Association of general and central obesity with diabetes and prediabetes in rural bangladeshi population. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 9(4), 247-251. DOI : 10.1016/j.dsx.2015.02.002
- G. M. Rao, L. O. Morghom, M. N. Kabur, B. M. B. Mohmud & K. Ashibani. (1989). Serum glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels in diabetes mellitus. Indian Journal of Medical Sciences, 43(5), 118-121.