Table 1. Examples of gender bias in Google translation
Table 2. Facial gender recognition error rate(%)
Table 3. Research methodology for gender innovation
참고문헌
- Center for Women in Science, Engineering, and Technology. (2013). How gender analysis of science and technology gender innovation contributes to research. Seoul : WISET. ISBN 978-89-97520-24-4
- KOFWST. (2017). http://gister.re.kr/#!/main
- M. O. Moon. (2014). 'Gender Innovation' in Science and Technology R & D and Knowledge Diffusion. Seoul : Policy Research Report of Science and Technology Advisory Council.
- L. Zhang & M. S. Na. (2017). A qualitative study on women's daily lives and smartphone use - focusing on interviews with Chinese women in their twenties. Journal of the Korea Convergence Society, 15(10), 467-483.
- D. C. Park. (2013). Effect of news anchor's gender on affect of viewers and memory of news. Journal of the Korea Convergence Society, 11(9), 333-339.
- J. Y. Lee. (2018). Gender Analysis in Elderly Speech Signal Processing. Journal of the Korea Convergence Society, 10(10), 351-356.
- J. H. Moon & J. Y. Lee. (2015). Development of medical/electrical convergence software for classification between normal and pathological voices. Journal of the Korea Convergence Society, 13(12), 187-192.
- K. N. Lee. (2017). Voice language processing technology, how far have you come. National Korean Language Institute, New Language Life, 27(4), 99-116.
- B. C. Cho, S. Cheon, K. N. Kim & H. S. Yuk. (2018). A policy study for the voice recognition technology based on elderly health care. Journal of the Korea Convergence Society, 16(2), 9-17.
- S. Y. Lee. (2011). The overall speaking rate and articulation rate of normal elderly people, Graduate program in speech and language pathology, Master these, Yonsei University.
- J. Lee. (2014). KHIDI Brief. Korea Health Industry Development Institute, 140(2014), 1-2.
- H. T. Kim, S. H. Cho, S. M. Youn, D. I. Sun & M. S. Kim. (2000). The Changes and Characteristics of Acoustic Parameters with Aging in Korean, Korean J Otolaryngol, 2000(43), 69-74
- H. J. Moon, M. H, Lee & K. H. Jeong. (2015). Authentication Performance Optimization for Smart-phone based Multimodal Biometrics. Journal of the Korea Convergence Society, 13(6), 151-156.
- S. W. Kim, H. H. Park, E. S. Park & H. S. Choi. (2010). Acoustic Characteristics of Normal Healthy Koreans with Advancing age, Phonetics and Speech Sciences, 2(4), 19-28
- J. Y. Lee. (2016). Development of Voice Activity Detection Algorithm for Elderly Voice based on the Higher Order Differential Energy Operator, Journal of Digital Convergence. 14(11), 249-255. https://doi.org/10.14400/JDC.2016.14.11.249
- A. Caliskan, J. J. Bryson, & A. Narayanan. (2017). Semantics derived automatically from language corpora contain human-like biases, Science. 356(6334), 183-186. DOI: 10.1126/science.aal4230
- T. Bolukbasi, K. Chang, J. Zou, V. Saligrama & A. Kalai. (2016). Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. DOI; arXiv:1607.06520
- J. M. Twenge, W. K. Cambell & B. Gentile. (2012). Male and Female Pronoun Use in the U.S. Books Reflects Women's Status, 1900-2008, Sex Role, 67(9-10), 488-493. DOI : 10.1007/s11199-012-0194-
- L. Schiebinger. (2014). Gendered Innovations: harnessing the creative power of sex and gender anaysis to discover new ideas and develop new technologies, Triple Helix, 1-9.
- P. Jonathon Phillps et al. (2011). An Other-Race Effect for Face Recognition Algorithms, ACM digital library, 8(2). DOI: 10.1145/1870076.1870082
- J. Buolamwini & T. Gebru. (2018). Gender Shade: Intersectional Accuracy Disparities in Commercial Gender Classification, Proceedings of Machine Learning Research, 81, 1-15.