Figure 1. Isolation scheme of A. pectinifera.
Figure 2. Chemical structure of compound 1, 2, and 3.
Figure 3. Effect of compound 1, 2, and 3 on keratinocyte stem cells (KSCs) viability. After KSCs were treated with various concentrations of compound 1, 2, and 3 for 24 h, CCK-8 assay was performed. Data are shown as a percentage of control from three independent experiments in triplicate. *p < 0.05, ** p < 0.01 compared with the untreated control.
Figure 4. Effect of compound 1, 2, and 3 on proliferation of keratinocyte stem cells (KSCs). Cells were incubated with various concentration of compound 1, 2, and 3 for 72 h. KSCs proliferation was measured using CCK-8 assay. Data are shown as a percentage of control from the three independent experiments in triplicate and values represent as the mean ± SD. *p < 0.05, ** p < 0.01 compared with the untreated control (BM, basal medium). Growth medium (GM) was used as a positive control.
Figure 5. Transcriptional expression profile of HAS-2 and HAS-3 in compound 3-treated HaCaT cells. HaCaT cells were incubated with compound 3 for 24h. Total RNA was extracted and quantitative real time PCR was performed for HAS-2 (A) and HAS-3 (B). G3PDH was used as an internal control. Results are the mean ± SD. of experiments using data are shown as fold increase from the three independent experiments in triplicate. *p < 0.05, ** p < 0.01 compared with the untreated control. Retinoic acid (10-7 M) was used as a positive control.
Figure 6. Collagen synthesis-promoting effects of compound 3. Collagen synthesis was evaluated using pro-collagen EIA assay. TGF-β (10 ng/mL) was used as a positive control. *p < 0.05, ** p < 0.01 compared with the untreated control.
참고문헌
- R. M. Lavker and T. T. Sun, Epidermal stem cells: properties, markers, and location, Proc. Natl. Acad. Sci. USA, 97(25), 13473 (2000). https://doi.org/10.1073/pnas.250380097
- L. Alonso and E. Fuchs, Stem cells of the skin epithelium, Proc. Natl. Acad. Sci. USA, 100(suppl.1), 11830 (2003). https://doi.org/10.1073/pnas.1734203100
- C. Blanpain and E. Fuchs, Epidermal stem cells of the skin, Annu. Rev. Cell. Dev. Biol., 22, 339 (2006). https://doi.org/10.1146/annurev.cellbio.22.010305.104357
- A. Webb, A. Li, and P. Kaur, Location and phenotype of human adult keratinocyte stem cells of the skin, Differentiation, 72(8), 387 (2004). https://doi.org/10.1111/j.1432-0436.2004.07208005.x
- J. R. Bickenbach, M. M. Stern, K. L. Grinnell, A. Manuel, and S. Chinnathambi, Epidermal stem cells have the potential to assist in healing damaged tissues, J. Investig. Dermatol. Symp. Proc., 11(1), 118 (2006). https://doi.org/10.1038/sj.jidsymp.5650009
- N. Gago, V. Perez-Lopez, J. P. Sanz-Jaka, P. Cormenzana, I. Eizaguirre, A. Bernad, and A. Izeta, Age-dependent depletion of human skin-derived progenitor cells, Stem Cells, 27(5), 1164 (2009). https://doi.org/10.1002/stem.27
- I. Ghersetich, T. Lotti, G. Campanile, C. Grappone, and G. Dini, Hyaluronic acid in cutaneous intrinsic aging, Int. J. Dermatol., 33, 119 (1994). https://doi.org/10.1111/j.1365-4362.1994.tb01540.x
- W. Manuskiatti and H. I. Maibach, Hyaluronic acid and skin: wound healing and aging, Int. J. Dermatol., 35, 539 (1996). https://doi.org/10.1111/j.1365-4362.1996.tb03650.x
- S. Karvinen, S. Pasonen-Seppanen, J. M. Hyttinen, J. P. Pienimaki, K. Toronen, T. A. Jokela, M. I. Tammi, and R. Tammi, Keratinocyte growth factor stimulates migration and hyaluronan synthesis in the epidermis by activation of keratinocyte hyaluronan synthase 2 and 3, J. Biol. Chem., 278(49), 49495 (2003). https://doi.org/10.1074/jbc.M310445200
- S. Kim, B. Y. Kang, S. Y. Cho, D. S. Sung, H. K. Chang, M. H. Yeom, D. H. Kim, Y. C. Sim, and Y. S. Lee, Compound K induces expression of hyaluronan synthase 2 gene in transformed human keratinocytes and increases hyaluronan in hairless mouse skin, Biochem. Biophys. Res. Comm., 316, 348 (2004). https://doi.org/10.1016/j.bbrc.2004.02.046
- T. Sayo, Y. Sugiyama, Y. Takahashi, N. Ozawa, S. Sakai, O. Ishikawa, M. Tamura, and S. Inoue, Hyaluronan synthase 3 regulates hyaluronan synthesis in cultured human keratinocytes, J. Invest Dermatol., 118, 43 (2002). https://doi.org/10.1046/j.0022-202x.2001.01613.x
- F. Liebel, S. Kaur, E. Ruvolo, N. Kollias, and M. D. Southall, Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes, J. Invest. Dermatol., 132(7), 1901 (2012). https://doi.org/10.1038/jid.2011.476
- L. Rittie and G. J. Fisher, UV-light-induced signal cascades and skin aging, Ageing Res. Rev., 1(4), 705 (2002). https://doi.org/10.1016/S1568-1637(02)00024-7
- Y. S. Kim, Selective feeding on the several bivalve molluscs by starfish, Asterias amurensis Lutken, Bull. Fac. Fish., 19, 244 (1969).
- K. H. Kang, J. M. Kim, and S. T. Oh, Predation of Asterias amurensis and Asterina pectinifera on valuable bivalves at different water temperature, Korean J. Malacol., 16(1-2), 17 (2000).
- Korean Patent 0044347 (2001).
- H. Y. Park, J. I. Lee, K. H. Nam, and M. S. Jang, Physiochemical characteristics of calcium supplement manufactured using starfish, Korean J. Food Preserv., 19(5), 727 (2012). https://doi.org/10.11002/kjfp.2012.19.5.727
- H. S. Jeong, M. C. Kwon, J. G. Han, J. H. Ha, L. Jin, J. C. Kim, H. G. Kwak, B. Y. Hwang, and H. Y. Lee, Enhancement of skin immune activation effect of collagen peptides isolated from Asterias amurensis. Korean J. Food Sci. Technol., 40(5), 522 (2008).
- M. C. Kwon, C. H. Kim, H. S. Kim, B. Y. Hwang, and H. Y. Lee, Anti-wrinkle activity of low molecular weight peptides derived from the collagen isolated from Asterias amurensis, Korean J. Food Sci. Technol., 39(6), 625 (2007).
- Korea Patent 10-2001-0030718 (2001).
- Korea Patent 10-2002-0004701 (2002).
- Korea Patent 10-2003-0090586 (2003).
-
R. Higuchi, Y. Noguchi, T. Komori, and T. Sasaki, Biologically active glycosides from asteroidea, XVIII.
$^{1}H-NMR$ spectroscopy and biological activities of polyhydroxylated steroids from the starfish Asterina pectinifera Muller et Troschel, Liebigs Ann. Chem., 1988(12), 1185 (1988). https://doi.org/10.1002/jlac.198819881214 - Z. Li, G. Chen, X. Lu, H. Wang, B. Feng, and Y. Pei, Three new steroid glycosides from the starfish Asterina pectinifera, Nat. Prod. Res., 27(20), 1816 (2013). https://doi.org/10.1080/14786419.2012.761621
-
A. A. Kicha, A. I. Kalinovsky, E. V. Levina, V. A. Stonik, and G. B. Elyakov, Asterosaponin
$P_{1}$ from the starfish Patiria pectinifera, Tetrahedron Lett., 24(36), 3893 (1983). https://doi.org/10.1016/S0040-4039(00)94305-3 - H. Zuo, T. Wang, Y. Qi, Q. Zhao, and Z. Li, Extraction, purification and cytotoxic activity of cerebrosides from Asterina pectinifera, Adv. Mater. Res., 781-784, 682 (2013). https://doi.org/10.4028/www.scientific.net/AMR.781-784.682
- Y. Peng, J. Zheng, R. Huang, Y. Wang, T. Xu, X. Zhou, Q. Liu, F. Zeng, H. Ju, X. Yang, and Y. Liu, Polyhydroxy steroids and saponins from China sea starfish Asterina pectinifera and their biological activities, Chem. Pharm. Bull., 58(6), 856 (2010). https://doi.org/10.1248/cpb.58.856
- N. P. Thao, N. X. Cuong, B. T. T. Luyen, N. V. Thanh, N. X. Nhiem, Y. S. Koh, B. M. Ly, N. H. Nam, P. V. Kiem, C. V. Minh, and Y. H. Kim, Anti-inflammatory asterosaponins from the starfish Astropecten monacanthus, J. Nat. Prod., 76(9), 1764 (2013). https://doi.org/10.1021/np400492a
- N. V. Ivanchina, A. A. Kicha, A. I. Kalinovsky, P. S. Dmitrenok, V. A. Stonik, R. Riguera, and C. Jimenez, Hemolytic polar steroidal constituents of the starfish Aphelasterias japonica, J. Nat. Prod., 63(8), 1178 (2000). https://doi.org/10.1021/np000030f
- W. Wang, F. Li, J. Hong, C. O. Lee, H. Y. Cho, K. S. Im, and J. H. Jung, Four new saponins from the starfish Certonardoa semiregularis, Chem. Pharm. Bull., 51(4), 435 (2003). https://doi.org/10.1248/cpb.51.435
- R. Riccio, A novel group of highly hydroxylated steroids from the starfish Protoreaster nodosus, Tetrahedron, 38(24), 3615 (1982). https://doi.org/10.1016/0040-4020(82)80069-0