DOI QR코드

DOI QR Code

Hydrogeochemistry and Occurrences of Uranium and Radon in Groundwater of Mungyeong Area

문경지역 지하수의 수리지화학 및 우라늄과 라돈의 산출 특성

  • Lee, Byeongdae (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Byung Uk (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Moon Su (Soil and Groundwater Research Division, National Institute of Environmental Research) ;
  • Hwang, Jae Hong (Geoplatform Division, Korea Institute of Geoscience and Mineral Resources)
  • 이병대 (한국지질자원연구원 지질환경연구본부) ;
  • 조병욱 (한국지질자원연구원 지질환경연구본부) ;
  • 김문수 (국립환경과학원 토양지하수연구과) ;
  • 황재홍 (한국지질자원연구원 지오플랫폼연구본부)
  • Received : 2018.11.27
  • Accepted : 2018.12.15
  • Published : 2018.12.28

Abstract

The occurrence of natural radionuclides like uranium and radon in groundwater was hydrochemically examined based on 40 well groundwaters in Mungyeong area. The range of electrical conductivity (EC) value in the study area was $68{\sim}574{\mu}S/cm$. In addition to the increase of EC value, the content of cations and anions also tends to increase. Uranium concentrations ranged from $0.03{\sim}169{\mu}g/L$ (median value, $0.82{\mu}g/L$) and radon concentrations ranged from 70~30,700 pCi/L (median value, 955 pCi/L). Only 1 out of 40 wells (2.5%) showed uranium concentration exceeding the maximum contaminant level (MCL; $30{\mu}g/L$) proposed by the US Environmental Protection Agency (EPA). Radon concentrations of eight wells (20%) exceeded AMCL(Alternative maximum contaminant level) of the US EPA (4,000 pCi/L). Four out of those eight wells even exceeded Finland's guideline level (8,100 pCi/L). When concentrations of uranium and radon were investigated in terms of geology, the highest values are generally associated with granite. The uranium and radon levels observed in this study are low in comparison to those of other countries with similar geological settings. It is likely that the measured value was lower than the actual content due to the inflow of shallow groundwater by the lack of casing and grouting.

문경지역 지하수관정 40개공을 대상으로 지하수의 수리지화학 및 자연방사성물질인 우라늄과 라돈의 산출특성을 규명하였다. 연구지역 지하수의 EC는 최소 68에서 최대 $574{\mu}S/cm$의 범위를 나타내고 있으며, EC의 증가와 더불어 주요 용존 양이온과 음이온의 함량도 증가하는 경향을 나타낸다. 우라늄 함량은 $0.03{\sim}169{\mu}g/L$(중앙값 $0.82{\mu}g/L$)로 매우 넓은 분포를 보여주고 있으며, 라돈 함량은 70~30,700 pCi/L(중앙값 955 pCi/L)의 범위를 나타내고 있다. 우라늄 함량에서 미국 EPA MCL $30{\mu}g/L$를 초과한 곳은 1개소로 전체 시료수의 2.5%에 해당된다. 라돈의 경우, 미국 EPA AMCL 4,000 pCi/L를 초과한 곳은 8개소로 전체 시료수의 20%이며, 이중 핀란드의 음용 제안치인 8,100 pCi/L를 초과하는 시료는 4개소이다. 연구지역에서 지질별 지하수의 우라늄과 라돈 농도는 화강암지역의 지하수에서 가장 높다. 연구지역 지하수의 우라늄과 라돈 함량은 유사한 지질을 가지는 외국에 비하면 낮은 것으로 나타났다. 이는 우리나라 농촌지역 지하수 관정의 특성상 케이싱 및 그라우팅이 미비한 관정이 많으므로 천부 지하수의 공내 유입을 의심할 수 있다.

Keywords

JOHGB2_2018_v51n6_553_f0001.png 이미지

Fig. 1. Location of groundwater samples and lithology map of the study area.

JOHGB2_2018_v51n6_553_f0002.png 이미지

Fig. 2. Relationship between EC and the cations Na(A), K(B), Ca(C), Mg(D), SiO2(F), and Ca-HCO3(E).

JOHGB2_2018_v51n6_553_f0003.png 이미지

Fig. 3. Relationship between EC and the anions Cl(A), SO4(B), and Na-Cl(C), Cl-NO3(D), Ca-F(E).

JOHGB2_2018_v51n6_553_f0004.png 이미지

Fig. 4. Histogram of uranium(A) and radon(B) contentrations in groundwater.

JOHGB2_2018_v51n6_553_f0005.png 이미지

Fig. 5. Relationship between uranium and radon in the Mungyeong area.

JOHGB2_2018_v51n6_553_f0006.png 이미지

Fig. 6. Relationship between U and pH(A), EC(B), Eh(C), DO(D), K(E), Na(F), Ca(G) and Mg(H).

JOHGB2_2018_v51n6_553_f0007.png 이미지

Fig. 7. Relationship between Rn and pH(A), EC(B), Eh(C), DO(D), K(E), Na(F), Ca(G) and Mg(H).

JOHGB2_2018_v51n6_553_f0008.png 이미지

Fig. 8. Box-and-whisker plots showing statistical variations of uranium(A) and radon(B) related to geology(Gr: Granite, Ls: Limestone, Sedi: Sedimentary rock).

Table 2. Statistical summary of uranium and radon concentrations in groundwater

JOHGB2_2018_v51n6_553_t0001.png 이미지

Table 3. Uranium and radon concentrations

JOHGB2_2018_v51n6_553_t0002.png 이미지

Table 1. Physiochemical properties of groundwater samples from Mungyeong area. Unit is mg/L unless noted otherwise

JOHGB2_2018_v51n6_553_t0003.png 이미지

References

  1. Abdulrahman, I. A. (2014) Occurrence of radon in groundwater of Saudi Arabia, J. Environ. Radio., v.138, p.186-191. https://doi.org/10.1016/j.jenvrad.2014.07.028
  2. Banks, D., Frengstad, B., Midtgard, A. K., Krog, J. R. and Strand, T. (1998) The chemistry of Norweigian groundwaters; The distribution of radon, major and minor elements in 1604 crystalline bedrock groundwaters, Science of the Total Environ., v.222, p.71-91. https://doi.org/10.1016/S0048-9697(98)00291-5
  3. Cho, B.W., Kim, M.S., Kim, T.S., Han, J.S., Yun, U., Lee, B.D., Hwang, J.H. and Choo, C.O. (2012) Hydrochemistry and distribution of uranium and radon in groundwater of the Nonsan area, The Journal of Engineering Geology, v.22, p.427-437. https://doi.org/10.9720/kseg.2012.4.427
  4. Cho, B. W., Choo, C. O., Kim, M. S., Lee, Y. J., Yun, U. and Lee, B. D. (2011) Uranium and radon concentrations in groundwater near the Icheon granite, The Journal of Engineering Geology, v.21, p.259-269. https://doi.org/10.9720/kseg.2011.21.3.259
  5. Cho, B. W., Yun, U. and Choo, C. O. (2010) Natural radon removal efficiency of small-scale water supply system, Econ. Environ. Geol., v.43, p.33-42.
  6. Cho, B.W., Sung, I.H., Cho, S.Y. and Park, S.K. (2007) A preliminary investigation of radon concentrations in groundwater of south Korea, Journal of Soil and Groundwater Environment, v.12, p.98-104.
  7. Choo, C.O. (2002) Characteristics of uraniferous minerals in Daebo granite and significance of mineral species, Journal of Mineral Soc. Korea, v.15, p.11-21.
  8. Choubey, V.M., Bartarya, S.K. and Ramola, R.C. (2005) Radon variations in an active landslide zone along the Pinda River, in Chamoli Distric, Garhwal Lesser Himalaya, India, Environ. Geol., v.47, p.745-750. https://doi.org/10.1007/s00254-004-1196-8
  9. ChruScielewsky, W. and Kamit'lsky, Z. (1999) Radium and radon in natural under groundwater supply in the region of Lodz, Poland, International Journal of Occupational Medicine and Environmental Health, v.12, p.229-238.
  10. Chung, Y.S., Moon, J.H., Chung, Y.J. and Park, K. W. (1998) Determination of uranium in groundwater by instrumental newtron activation analysis, Journal of the Korean Society of Groundwater Environmental, v.5, p.210-214.
  11. Cook, P. G., Love, A. J. and Dighton, J. C. (1999) Inferring groundwater flow in fractured rock from dissolved radon, Ground Water, v.37, p.606-610. https://doi.org/10.1111/j.1745-6584.1999.tb01148.x
  12. Cothern, C. R. and Rebers, P. A. (1990) Radon, radium and uranium in drinking water, Lewis publishers.
  13. Egidi, P. (1997) Introduction to naturally occurring radioactive material. 42nd Annual Meeting of the Health Physics Society, 48p.
  14. Hakam, O.K., Choukri, A., Reyss, J.L. and Lferde, M. (2001) Determination and comparison of uranium and radium isotopes activities and activity ratios in samples from some natural water sources in Morocco. Journal of Environmental Radioactivity, v.57, p.175-189. https://doi.org/10.1016/S0265-931X(01)00016-9
  15. Han, J. H. and Park, K. H. (1996) Abundances of uranium and radon in groundwater of Taejeon area, Econ. Environ. Geol., v.29, p.589-595.
  16. Jeon, D. Y. and (2009) Radionuclides of groundwaters in Busan, J. of Kossge, v.14, p.51-61.
  17. Jeong, C. H., Kim, D. W., Kim, M. S., Lee, Y. J., Kim, T. S., Han, J. S. and Cho, B. W. (2012) Occurrence of natural radioactive materials in borehole groundwater and rock core in the Icheon Area, The Journal of Engineering Geology, v.22, p.95-111. https://doi.org/10.9720/kseg.2012.22.1.095
  18. Kim. N.J., Choi, S.O. and Kang, P.C. (1967) Geological map of Korea(1:50,000), Mungyeong Sheet, Geological Survey of Korea.
  19. Langmuir, D. (1997) Aqueous environmental geochemistry, Prentice-Hall, New Jersey.
  20. Lee, M.S. and Kim, S.W. (1968) Geological map of Korea(1:50,000), Hamchang Sheet, Geological Survey of Korea.
  21. Lee, J. Y. (2008) A review on occurrence, health risk and mitigation measure of uranium, radirm and radon in groundwater, J. Geo. Socie. Kor., v.44, p.341-352.
  22. Lee, H.K., Yoo, E.K. and Hong, S.H. (1973) Geological map of Korea(1:50,000), Yongyuri Sheet, Geological and Mineral Institute of Korea.
  23. Loomis, D.P. (1987) Radon-222 concentration and aquifer lithology in North Carolina, Ground Water Monitoring Review, v.7, p.33-39.
  24. Michel, J. (1990) Relationship of radium and radon with geological formation, In: Cothern. C.R. and Rebers, P.A. (eds.), Radium and Uranium in Drinking Water, Lewis Publishers, Inc., Michigan, p.83-96.
  25. NIER (2006) Study on the radionuclide concentration in the groundwater, NIER Report, 200p.
  26. NIER (2002) Study on the radionuclide concentration in the groundwater, NIER Report, 357p.
  27. Salonen, L. and Hukkanen, H. (1997) Advantages of lowbackground liquid scintillation alphaspectrometry and pulse shape analysis in measuring radon, uranium, and radium226 in groundwater samples, J. Radio and Nuclear Chem, v.226, p.67-74. https://doi.org/10.1007/BF02063626
  28. Singh, J., Singh, H., Singh, S. and Bajwa, B. S. (2009) Estimation of uranium and radon concention in some drinking water samples of Upper Siwaliks, India, Environ. Monit Assess, v.154, p.15-22. https://doi.org/10.1007/s10661-008-0373-8
  29. Jose, M. C. and Maria, L. G. (2006) Natural radioactivity in Brazilian groundwater, J. of Environ. Radio., v.85, p.71-83. https://doi.org/10.1016/j.jenvrad.2005.05.009
  30. Osmond, J.K. (1980) Uranium disequilibrium in hydrologic studies, Elsevier, Oxford, 259p.
  31. Pietrzak-Flis, Z., Rosiak, L., Suplinska, M.M., Chrzanowski, E. and Dembinska, S. (2001) Daily intakes of 238U, 234U, 232Th, 230Th and 226Ra in the adult population of central Poland, The Science of the Total Environment, v.273, 163-169. https://doi.org/10.1016/S0048-9697(00)00849-4
  32. Yun, S.K., Cha, M.S., Kim, J.J. and Lee, J.D, (1988) Geological map of Korea(1:50,000), Yechon Sheet, Korea Institute of Energy and Resources.
  33. Zapecza, O. S. and Szabo, Z. (1986) Natural radioactivity in groundwater-a review. National Water Summary 1986-Hydrologic Event and Ground-Water Quality, U.S.G.S. water-supply paper, v.2325, p.50-57.
  34. Zhuo, W., Iida, T. and Yang, X. (2001) Occurrence of 222Rn, 226Ra, 228Ra and U in groundwater in Fujian Province, China, Journal of Radioactivity, v.53, p.111-120. https://doi.org/10.1016/S0265-931X(00)00108-9