DOI QR코드

DOI QR Code

소성에 따른 굴패각의 광물학적 특성변화: 석회석과의 비교 연구

Mineralogical Changes of Oyster Shells by Calcination: A Comparative Study with Limestone

  • Lee, Jin Won (Department of Environmental Engineering, Kunsan National University) ;
  • Choi, Seung-Hyun (Department of Environmental Engineering, Kunsan National University) ;
  • Kim, Seok-Hwi (Institute for Advanced Engineering) ;
  • Cha, Wang Seog (Department of Environmental Engineering, Kunsan National University) ;
  • Kim, Kangjoo (Department of Environmental Engineering, Kunsan National University) ;
  • Moon, Bo-Kyung (Korea Western Power, Co., Ltd.)
  • 투고 : 2018.11.05
  • 심사 : 2018.12.11
  • 발행 : 2018.12.28

초록

국내에서는 연간 약 30만톤의 굴패각이 발생하고 있어 이를 대규모로 활용할 수 있는 방안이 필요한 실정이다. 최근에는 굴패각을 소성하여 유기물을 분해시키고, $CaCO_3$를 CaO로 전환하여 습식탈황제로 활용하는 방안이 적절한 대안으로 고려되고 있다. 이에 본 연구에서는 소성에 따른 굴패각의 광물학적 특성변화(표면적, 상전이, 표면상태 등)를 관찰하고 석회석의 그것과 비교하였다. 굴패각은 판상 및 주상의 입자들의 집합체로 구성되어 조직이 치밀한 석회석 보다는 같은 입도에서 훨씬 큰 비표면적을 갖는다. 굴패각은 석회석보다는 낮은 온도에서 상전이가 일어남을 확인하였다. 석회석은 소성 후에 비표면적이 급격히 증가하는 결과를 보였지만, 굴패각은 소성 후에는 비표면적이 오히려 줄어드는 현상이 관찰되었다. 이러한 현상은 굴패각에 소량 포함된 Na가 용제로 작용하여 소성시 굴패각의 용융을 야기하고 이로 인하여 입자들이 낮은 온도에서 소결됨으로써 나타난 현상으로 추측된다. 아울러, 소결된 표면이 나머지 부분을 에워쌈으로써, 온도를 높이고 열처리시간을 늘려도 일부는 상전이되지 아니하는 현상도 관찰되었다. 이러한 현상에 대한 효과를 탈황의 관점에서 고찰하는 추가 연구가 필요해 보인다.

About 300 thousand tones of oyster shells are produced annually and, thus, their massive recycling methods are required. Recently, a method, utilizing them as wet desulfurization materials after removal of organic matters and changing $CaCO_3$ phase into CaO through calcination, is under consideration. This study investigates the mineralogical changes (specific surface area, phase changes, surface state, etc.) of oyster shells by calcination and their characteristics were compared with those of limestone. Uncalcined oyster shells showed the higher specific surface area than limestone because the former are composed of platy and columnar structures. In contrast, investigated limestone showed a dense structure. The phase change of oyster shells occurred at lower temperature than that of limestone. The specific surface area of oyster shell decreased significantly after calcination while limestone depicted a drastic increase. Small amount of Na contained in oyster shell was suggested as the cause of this phenomenon; in that, it acted as a flux causing melting and sintering of oyster materials at lower temperature. Because of this, an additional phenomenon was observed that a part of shell materials remained untransformed even at higher calcination temperature and after longer treatment period due to the sintered surface, which covers the rest parts. Further studies investigating the effect of this phenomena from the perspective of desulfurization is required.

키워드

JOHGB2_2018_v51n6_485_f0001.png 이미지

Fig. 1. TGA analysis results for oyster shell (a) and limestone (b).

JOHGB2_2018_v51n6_485_f0002.png 이미지

Fig. 2. Changes in XRD patterns of the calcined oyster shells according to calcination temperature and duration.

JOHGB2_2018_v51n6_485_f0003.png 이미지

Fig. 3. XRD patterns of the limestone and oyster shells calcined at 900 ℃ with different calcination duration.

JOHGB2_2018_v51n6_485_f0004.png 이미지

Fig. 4. BET surface areas of the limestone and oyster shells calcined at 900 ℃ with different calcination duration.

JOHGB2_2018_v51n6_485_f0005.png 이미지

Fig. 5. SEM images of oyster shells calcined at different temperature.

JOHGB2_2018_v51n6_485_f0006.png 이미지

Fig. 6. SEM images of limestone and oyster shells calcined at 900 oC with different calcination duration.

Table 1. XRF analysis results for Korean oyster shells and limestone used for desulfurization in Western Power Co. Ltd. (Data after Ha et al., 2017)

JOHGB2_2018_v51n6_485_t0001.png 이미지

참고문헌

  1. Borgwardt, R.H. and Bruce, K.R. (1986) Effect of specific surface area on the reactivity of CaO with $SO_2$. AlChE J., v.32, p.239-246. https://doi.org/10.1002/aic.690320210
  2. Chen, C., Zhao, C., Liang, C. and Pang, K. (2007) Calcination and sintering characteristics of limestone under $O_2/CO_2$ combustion atmosphere. Fuel Process. Technol., v.88, p.171-178. https://doi.org/10.1016/j.fuproc.2006.03.003
  3. Chu, K.J., Yoo, K.S. and Kim, K.T. (1997) Characteristics of gypsum crystal growth over calcium based slurry in desulfurization reactions. Mater. Res. Bull., v.32, p.197-204. https://doi.org/10.1016/S0025-5408(96)00181-X
  4. Eo, S.H., Hwang, K.H. and Kim, J.G. (2002) Application of oyster shells as aggregates for concrete. J. Korea Concr. Inst., v.14, p.540-548. https://doi.org/10.4334/JKCI.2002.14.4.540
  5. Ha, S.H., Cha, M.K., Kim, K., Kim, S.H. and Kim, Y. (2017) Mineralogical and chemical characteristics of the oyster shells from Korea. J. Miner. Soc. Korea, v.30, p.149-159. https://doi.org/10.9727/jmsk.2017.30.4.149
  6. Han, J.D. and Kim, M.P. (1997) A study on $SO_2$ absorption of oyster-shell powder for dry fuel gas desulfurization. J. Korean Soc. Environ. Eng., v.19, p.1579-1590.
  7. Jung, J.H., Yoo, K.S., Kim, H.G., Lee, H.K. and Shon, B.H. (2007) Reuse of waste oyster shells as a $SO_2$/NOx removal absorbent. J. Ind. Eng. Chem., v.13. p.512-517.
  8. Kim, E., Kim, K., Choi, S.H. and Cha, W.S. (2017) A method manufacturing high-quality gypsum using shell by wet desulfurization. Patent of Korea, KR101753823B1.
  9. Kim, M.J., Wang, X., Lee, J.J., Lee, S.H., Kim, S.B. and Kim, C.J. (2013) Development of flowable backfill material using waste oyster shell, coal ash, and surplus soil. Clean Technology, v.19, p.423-429. https://doi.org/10.7464/ksct.2013.19.4.423
  10. Kokal, H.R. and Ranade, M.U. (1994) Fluxes for metallurgy. In Carr, D.D. (ed.), Industrial Minerals and Rocks. 6th ed., Society for Mining, Metallurgy, and Exploration, Inc., Colorado, p.661-675.
  11. Kouzu, M., Kajita, A. and Fujimori, A. (2016) Catalytic activity of calcined scallop shell for rapeseed oil transesterification to produce biodiesel. Fuel, v.182, p.220-226. https://doi.org/10.1016/j.fuel.2016.05.111
  12. Kwon, Y.S., Lee, K.H. and Park, J.B. (2003) Sorption characteristics of heavy metals for oyster shell and fly ash. J. Korea Soc. Waste Manag., v.20, p.337-346.
  13. Liu, Y. and Yang, Y. (2015) Evolution of the Surface Area of Limestone during Calcination and Sintering. Journal of Power and Energy Engineering, v.3, p.56-62.
  14. Moon, J.I., Jung, Y.J. and Sung, N.C. (2002) Study on potential risks of soil amendment, experiment using sewage treatment sludge and oyster shell. J. Korean Soc. Environ. Eng., v.24, p.715-724.
  15. Moropoulou, A., Bakolas, A. and Aggelakopoulou, E. (2001) The effects of limestone characteristics and calcination temperature to the reactivity of the quicklime. Cem. Concr. Res., v.31, p.633-639. https://doi.org/10.1016/S0008-8846(00)00490-7
  16. Nair, P., Singh, B., Upadhyay, S.N. and Sharma, Y.C. (2012) Synthesis of biodiesel from low FFA waste frying oil using calcium oxide derived from Mereterix as a heterogeneous catalyst. J. Clean. Prod., v.29-30, p.82-90. https://doi.org/10.1016/j.jclepro.2012.01.039
  17. Singh, A. and Agrawal, M. (2008) Acid rain and its ecological consequences. J. Environ. Biol., v.29, p.15-24.
  18. Skea, A.F., Bott, T.R. and Beltagui, S.A. (2002) A comparision of mineral fouling propensity of three coals using a pilot scale under-fed stoker combustor. Appl. Therm. Eng., v.22, p.1835-1845. https://doi.org/10.1016/S1359-4311(02)00065-0
  19. Wang, L. and Zhao, Y. (2008) Kinetics of sulfite oxidation in wet desulfurization with catalyst of organic acid. Chem. Eng. J., v.136, p.221-226. https://doi.org/10.1016/j.cej.2007.04.004
  20. Wang, X., Xu, Z., Wei, B., Zhang, L., Tan, H., Yang, T., Mikulcic, H. and Duic, N. (2015) The ash deposiiton mechanism in boiler burning Zhundong coal with high contents of sodium and calcium: a study from ash evaporating to condensing. Appl. Therm. Eng., v.80, p.150-159. https://doi.org/10.1016/j.applthermaleng.2015.01.051