DOI QR코드

DOI QR Code

Crowdsourced Urban Sensing: Urban Travel Behavior Using Mobile Based Sensing

  • Received : 2018.07.10
  • Accepted : 2018.09.29
  • Published : 2018.12.30

Abstract

In the context of ever-faster urbanization, cities are becoming increasingly complex, and data collection to understand such complex relationships is becoming a very important factor. This paper focuses on the lighter weight of the method of collecting urban data, and studied how to use such complementary data collection using crowdsourcing. Especially, the method of converting mobile acceleration sensor information to urban trip information by combining with locational information was experimented. Using the parameters for transportation type classification obtained from the research, information was obtained and verified in Singapore and Zurich. The result of this study is thought to be a good example of how to combine raw data into meaningful behavior information.

Keywords

References

  1. Barber, B. R. (2003). Strong democracy: Participatory politics for a new age, Univ of California Press.
  2. Bennett, W. L. and A. Segerberg (2012). "The logic of connective action: Digital media and the personalization of contentious politics." Information, Communication & Society 15(5): 739-768. https://doi.org/10.1080/1369118X.2012.670661
  3. Bento, A. M., M. L. Cropper, A. M. Mobarak and K. Vinha (2005). "The effects of urban spatial structure on travel demand in the United States." Review of Economics and Statistics 87(3): 466-478. https://doi.org/10.1162/0034653054638292
  4. Bieber, G., J. Voskamp and B. Urban (2009). Activity recognition for everyday life on mobile phones. International Conference on Universal Access in Human-Computer Interaction, Springer.
  5. Bjogvinsson, E., P. Ehn and P.-A. Hillgren (2012). "Design things and design thinking: Contemporary participatory design challenges." Design Issues 28(3): 101-116. https://doi.org/10.1162/DESI_a_00165
  6. Boschen, M. J. and L. M. Casey (2008). "The use of mobile telephones as adjuncts to cognitive behavioral psychotherapy." Professional Psychology: Research and Practice 39(5): 546. https://doi.org/10.1037/0735-7028.39.5.546
  7. Boulos, M. N. K., B. Resch, D. N. Crowley, J. G. Breslin, G. Sohn, R. Burtner, W. A. Pike, E. Jezierski and K.-Y. S. Chuang (2011). "Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: trends, OGC standards and application examples." International journal of health geographics 10(1):67. https://doi.org/10.1186/1476-072X-10-67
  8. Buckley, J. J. (1985). "Fuzzy hierarchical analysis." Fuzzy sets and systems 17(3): 233-247. https://doi.org/10.1016/0165-0114(85)90090-9
  9. Chen, Y.-C., J.-R. Chiang, H.-h. Chu, P. Huang and A. W. Tsui (2005). Sensor-assisted wi-fi indoor location system for adapting to environmental dynamics. Proceedings of the 8th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems, ACM.
  10. Choudhury, T., S. Consolvo, B. Harrison, J. Hightower, A. LaMarca, L. LeGrand, A. Rahimi, A. Rea, G. Bordello and B. Hemingway (2008). "The mobile sensing platform: An embedded activity recognition system." IEEE Pervasive Computing 7(2).
  11. Cohen, E. R. (2007). Quantities, units and symbols in physical chemistry, Royal Society of Chemistry.
  12. Fesenmaier, D. R. and J.-M. Jeng (2000). "Assessing structure in the pleasure trip planning process." Tourism analysis 5(1): 13-27.
  13. Hemminki, S., P. Nurmi and S. Tarkoma (2013). Accelerometerbased transportation mode detection on smartphones. Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, ACM.
  14. Howe, J. (2006). "The rise of crowdsourcing." Wired magazine 14(6): 1-4.
  15. Kanade, T. and M. Okutomi (1994). "A stereo matching algorithm with an adaptive window: Theory and experiment." IEEE transactions on pattern analysis and machine intelligence 16(9): 920-932. https://doi.org/10.1109/34.310690
  16. Karn, P. and C. Partridge (1987). Improving round-trip time estimates in reliable transport protocols. ACM SIGCOMM Computer Communication Review, ACM.
  17. Krasner, N. F. (2010). A GPS receiver and method for processing GPS signals, EP Patent 1,260,830.
  18. Kumar, S. and K. B. Moore (2002). "The evolution of global positioning system (GPS) technology." Journal of Science Education and Technology 11(1): 59-80.
  19. Lam, T. and C. H. Hsu (2006). "Predicting behavioral intention of choosing a travel destination." Tourism management 27(4): 589-599. https://doi.org/10.1016/j.tourman.2005.02.003
  20. Lovse, J., W. Teskey, G. Lachapelle and M. Cannon (1995). "Dynamic deformation monitoring of tall structure using GPS technology." Journal of surveying engineering 121(1): 35-40. https://doi.org/10.1061/(ASCE)0733-9453(1995)121:1(35)
  21. Mollick, E. (2014). "The dynamics of crowdfunding: An exploratory study." Journal of business venturing 29(1): 1-16. https://doi.org/10.1016/j.jbusvent.2013.06.005
  22. Mollick, E. R. (2013). "The dynamics of crowdfunding: Determinants of success and failure."
  23. Nasrabadi, N. M. (2007). "Pattern recognition and machine learning." Journal of electronic imaging 16(4): 049901. https://doi.org/10.1117/1.2819119
  24. Okutomi, M. and T. Kanade (1992). "A locally adaptive window for signal matching." International Journal of Computer Vision 7(2): 143-162. https://doi.org/10.1007/BF00128133
  25. Paek, J., J. Kim and R. Govindan (2010). Energy-efficient rateadaptive GPS based positioning for smartphones, ACM.
  26. Papagiannaki, K. and D. Diakoulaki (2009). "Decomposition analysis of CO2 emissions from passenger cars: The cases of Greece and Denmark." Energy Policy 37(8): 3259-3267. https://doi.org/10.1016/j.enpol.2009.04.026
  27. Reddy, S., D. Estrin and M. Srivastava (2010). Recruitment framework for participatory sensing data collections. International Conference on Pervasive Computing, Springer.
  28. Reddy, S., M. Mun, J. Burke, D. Estrin, M. Hansen and M. Srivastava (2010). "Using mobile phones to determine transportation modes." ACM Transactions on Sensor Networks (TOSN) 6(2): 13.
  29. Saelens, B. E., J. F. Sallis and L. D. Frank (2003). "Environmental correlates of walking and cycling: findings from the transportation, urban design, and planning literatures." Annals of behavioral medicine 25(2): 80-91. https://doi.org/10.1207/S15324796ABM2502_03
  30. Schuessler, N. and K. Axhausen (2009). "Processing raw data from global positioning systems without additional information." Transportation Research Record: Journal of the Transportation Research Board 2105(-1): 28-36. https://doi.org/10.3141/2105-04
  31. Sclove, R. (2012). "Reinventing technology assessment for the 21st century." Washington, DC: Science and Technology Program, Woodrow Wilson International Center for Scholars (WWICS).
  32. Shin, D., D. Aliaga, B. Tunçer, S. M. Arisona, S. Kim, D. Zund and G. Schmitt (2015). "Urban sensing: Using smartphones for transportation mode classification." Computers, Environment and Urban Systems 53: 76-86. https://doi.org/10.1016/j.compenvurbsys.2014.07.011
  33. Shin, D., S. M. Arisona, S. Georgakopoulou, G. Schmitt and S. Kim (2012). "A Crowdsourcing Urban Simulation Platform on Smartphone Technology: Strategies for Urban Data Visualization and Transportation Mode Detection." Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 377-384.
  34. Slavkovik, M., L. A. Dennis and M. Fisher (2014). "An Abstract Formal Basis for Digital Crowds." arXiv preprint arXiv:1408.1592.
  35. Tress, B. and G. Tress (2003). "Scenario visualisation for participatory landscape planning-a study from Denmark." Landscape and urban Planning 64(3): 161-178. https://doi.org/10.1016/S0169-2046(02)00219-0
  36. Vasileios, Z., M. George, L. George, H. Blunck, T. Godsk and D. Christensen (2010). "Indoor Positioning Using GPS Revisited." Pervasive Computing: 38-56.
  37. Vuchic, V. R. (2005). Urban transit: operations, planning, and economics.
  38. Wang, H., F. Calabrese, G. Di Lorenzo and C. Ratti (2010). Transportation mode inference from anonymized and aggregated mobile phone call detail records. Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on, IEEE.
  39. Wang, S., C. Chen and J. Ma (2010). Accelerometer based transportation mode recognition on mobile phones. Wearable Computing Systems (APWCS), 2010 Asia-Pacific Conference on, IEEE.
  40. Werner-Allen, G., K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees and M. Welsh (2006). "Deploying a wireless sensor network on an active volcano." IEEE internet computing 10(2): 18-25. https://doi.org/10.1109/MIC.2006.26
  41. Yan, T., M. Marzilli, R. Holmes, D. Ganesan and M. Corner (2009). mCrowd: a platform for mobile crowdsourcing. Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, ACM.
  42. Yli-Pelkonen, V. and J. Kohl (2005). "The role of local ecological knowledge in sustainable urban planning: perspectives from Finland." Sustainability: Science, Practice and Policy 1(1): 3-14. https://doi.org/10.1080/15487733.2005.11907960
  43. Zheng, Y., L. Liu, L. Wang and X. Xie (2008). Learning transportation mode from raw gps data for geographic applications on the web. Proceedings of the 17th international conference on World Wide Web, ACM.