• Title/Summary/Keyword: Mobile Sensing

Search Result 473, Processing Time 0.033 seconds

Repeated Overlapping Coalition Game Model for Mobile Crowd Sensing Mechanism

  • Kim, Sungwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3413-3430
    • /
    • 2017
  • With the fast increasing popularity of mobile services, ubiquitous mobile devices with enhanced sensing capabilities collect and share local information towards a common goal. The recent Mobile Crowd Sensing (MCS) paradigm enables a broad range of mobile applications and undoubtedly revolutionizes many sectors of our life. A critical challenge for the MCS paradigm is to induce mobile devices to be workers providing sensing services. In this study, we examine the problem of sensing task assignment to maximize the overall performance in MCS system while ensuring reciprocal advantages among mobile devices. Based on the overlapping coalition game model, we propose a novel workload determination scheme for each individual device. The proposed scheme can effectively decompose the complex optimization problem and obtains an effective solution using the interactive learning process. Finally, we have conducted extensive simulations, and the results demonstrate that the proposed scheme achieves a fair tradeoff solution between the MCS performance and the profit of individual devices.

THE PERFOMANCE OF GROUNDBASE MOBILE PLATFORM FOR C-BAND MICROWAVE SCATTEROMETER SYSTEM

  • Aziz H.;Mahmood N.N.;Ali A.;Jamil H.;Mahmood K.A.;Ahmad Z.;Ibrahim N.;Brevern P.V.;Chuah H.T.;Koo V.C.;Sing L.X.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.61-63
    • /
    • 2004
  • The procurement of a mobile microwave scatterometer platform involved the consideration to ensure a mobile platform and equipment selected full-filled technical requirement and safety standard in Malaysia. Designing, and modification works involved engineering methodology in determining and selecting a suitable hydraulic telescopic boom that suit a selected mobile platform available locally. The mobile platform is a delivery system for microwave remote sensing microwave scatterometer and other accessories to any locations in Malaysia. Total loading to be carried by the mobile platform is 4500 kg and its overall weight must be 16,000 kg as recommended by hydraulic telescopic boom manufacturers. The telescopic boom will elevate microwave scatterometer system including the antenna to a maximum height of 27 m, and can also be rotated through $3600^{\circ}$. A mechanism is incorporated in the system to enable tracking or monitoring angular movement of the hydraulic telescopic boom when positioned towards predetermined target.

  • PDF

Significant Motion-Based Adaptive Sampling Module for Mobile Sensing Framework

  • Muthohar, Muhammad Fiqri;Nugraha, I Gde Dharma;Choi, Deokjai
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.948-960
    • /
    • 2018
  • Many mobile sensing frameworks have been developed to help researcher doing their mobile sensing research. However, energy consumption is still an issue in the mobile sensing research, and the existing frameworks do not provide enough solution for solving the issue. We have surveyed several mobile sensing frameworks and carefully chose one framework to improve. We have designed an adaptive sampling module for a mobile sensing framework to help solve the energy consumption issue. However, in this study, we limit our design to an adaptive sampling module for the location and motion sensors. In our adaptive sampling module, we utilize the significant motion sensor to help the adaptive sampling. We experimented with two sampling strategies that utilized the significant motion sensor to achieve low-power consumption during the continuous sampling. The first strategy is to utilize the sensor naively only while the second one is to add the duty cycle to the naive approach. We show that both strategies achieve low energy consumption, but the one that is combined with the duty cycle achieves better result.

Simulation of Mobile Robot Navigation based on Multi-Sensor Data Fusion by Probabilistic Model

  • Jin, Tae-seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.167-174
    • /
    • 2018
  • Presently, the exploration of an unknown environment is an important task for the development of mobile robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, In mobile robotics, multi-sensor data fusion(MSDF) became useful method for navigation and collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within indoor environments. Simulation results with a mobile robot will demonstrate the effectiveness of the discussed methods.

Evaluation of Geo-based Image Fusion on Mobile Cloud Environment using Histogram Similarity Analysis

  • Lee, Kiwon;Kang, Sanggoo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Mobility and cloud platform have become the dominant paradigm to develop web services dealing with huge and diverse digital contents for scientific solution or engineering application. These two trends are technically combined into mobile cloud computing environment taking beneficial points from each. The intention of this study is to design and implement a mobile cloud application for remotely sensed image fusion for the further practical geo-based mobile services. In this implementation, the system architecture consists of two parts: mobile web client and cloud application server. Mobile web client is for user interface regarding image fusion application processing and image visualization and for mobile web service of data listing and browsing. Cloud application server works on OpenStack, open source cloud platform. In this part, three server instances are generated as web server instance, tiling server instance, and fusion server instance. With metadata browsing of the processing data, image fusion by Bayesian approach is performed using functions within Orfeo Toolbox (OTB), open source remote sensing library. In addition, similarity of fused images with respect to input image set is estimated by histogram distance metrics. This result can be used as the reference criterion for user parameter choice on Bayesian image fusion. It is thought that the implementation strategy for mobile cloud application based on full open sources provides good points for a mobile service supporting specific remote sensing functions, besides image fusion schemes, by user demands to expand remote sensing application fields.

A Probabilistic Tensor Factorization approach for Missing Data Inference in Mobile Crowd-Sensing

  • Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.63-72
    • /
    • 2021
  • Mobile crowd-sensing (MCS) is a promising sensing paradigm that leverages mobile users with smart devices to perform large-scale sensing tasks in order to provide services to specific applications in various domains. However, MCS sensing tasks may not always be successfully completed or timely completed for various reasons, such as accidentally leaving the tasks incomplete by the users, asynchronous transmission, or connection errors. This results in missing sensing data at specific locations and times, which can degrade the performance of the applications and lead to serious casualties. Therefore, in this paper, we propose a missing data inference approach, called missing data approximation with probabilistic tensor factorization (MDI-PTF), to approximate the missing values as closely as possible to the actual values while taking asynchronous data transmission time and different sensing locations of the mobile users into account. The proposed method first normalizes the data to limit the range of the possible values. Next, a probabilistic model of tensor factorization is formulated, and finally, the data are approximated using the gradient descent method. The performance of the proposed algorithm is verified by conducting simulations under various situations using different datasets.

GripLaunch: a Novel Sensor-Based Mobile User Interface with Touch Sensing Housing

  • Chang, Wook;Park, Joon-Ah;Lee, Hyun-Jeong;Cho, Joon-Kee;Soh, Byung-Seok;Shim, Jung-Hyun;Yang, Gyung-Hye;Cho, Sung-Jung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.304-313
    • /
    • 2006
  • This paper describes a novel way of applying capacitive sensing technology to a mobile user interface. The key idea is to use grip-pattern, which is naturally produced when a user tries to use the mobile device, as a clue to determine an application to be launched. To this end, a capacitive touch sensing system is carefully designed and installed underneath the housing of the mobile device to capture the information of the user's grip-pattern. The captured data is then recognized by dedicated recognition algorithms. The feasibility of the proposed user interface system is thoroughly evaluated with various recognition tests.

Vision-Based Mobile Robot Navigation by Robust Path Line Tracking (시각을 이용한 이동 로봇의 강건한 경로선 추종 주행)

  • Son, Min-Hyuk;Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.178-186
    • /
    • 2011
  • Line tracking is a well defined method of mobile robot navigation. It is simple in concept, technically easy to implement, and already employed in many industrial sites. Among several different line tracking methods, magnetic sensing is widely used in practice. In comparison, vision-based tracking is less popular due mainly to its sensitivity to surrounding conditions such as brightness and floor characteristics although vision is the most powerful robotic sensing capability. In this paper, a vision-based robust path line detection technique is proposed for the navigation of a mobile robot assuming uncontrollable surrounding conditions. The technique proposed has four processing steps; color space transformation, pixel-level line sensing, block-level line sensing, and robot navigation control. This technique effectively uses hue and saturation color values in the line sensing so to be insensitive to the brightness variation. Line finding in block-level makes not only the technique immune from the error of line pixel detection but also the robot control easy. The proposed technique was tested with a real mobile robot and proved its effectiveness.

Network Based Robot Simulator Implementing Uncertainties in Robot Motion and Sensing (로봇의 이동 및 센싱 불확실성이 고려된 네트워크 기반 로봇 시뮬레이션 프로그램)

  • Seo, Dong-Jin;Ko, Nak-Yong;Jung, Se-Woong;Lee, Jong-Bae
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • This paper suggests a multiple robot simulator which considers the uncertainties in robot motion and sensing. A mobile robot moves with errors due to some kinds of uncertainties from actuators, wheels, electrical components, environments. In addition, sensors attached to a mobile robot can't make accurate output information because of uncertainties of the sensor itself and environment. Uncertainties in robot motion and sensing leads researchers find difficulty in building mobile robot navigation algorithms. Generally, a robot algorithm without considering unexpected uncertainties fails to control its action in a real working environment and it leads to some troubles and damages. Thus, the authors propose a simulator model which includes robot motion and sensing uncertainties to help making robust algorithms. Sensor uncertainties are applied in range sensors which are widely used in mobile robot localization, obstacle detection, and map building. The paper shows performances of the proposed simulator by comparing it with a simulator without any uncertainty.

Response Time Analysis Considering Sensing Data Synchronization in Mobile Cloud Applications (모바일 클라우드 응용에서 센싱 데이터 동기화를 고려한 응답 시간 분석)

  • Min, Hong;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.137-141
    • /
    • 2015
  • Mobile cloud computing uses cloud service to solve the resource constraint problem of mobile devices. Offloading means that a task executed on the mobile device commits to cloud and many studies related to the energy consumption have been researched. In this paper, we designed a response time model considering sensing data synchronization to estimate the efficiency of the offloading scheme in terms of the response time. The proposed model considers synchronization of required sensing data to improve the accuracy of response time estimation when cloud processes the task requested from a mobile device. We found that the response time is effected by new sensing data generation rate and synchronization period through simulation results.