References
- Jeong DW, Kim HR, Jung G, Han S, Kim CT, Lee JH. 2014. Bacterial community migration in the ripening of doenjang, a traditional Korean fermented soybean food. J. Microbiol. Biotechnol. 24: 648-660. https://doi.org/10.4014/jmb.1401.01009
- Dunlap CA, Kwon SW, Rooney AP, Kim SJ. 2015. Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste. Int. J. Syst. Evol. Microbiol. 65: 3487-3492. https://doi.org/10.1099/ijsem.0.000441
- Mobley HL, Island MD, Hausinger RP. 1995. Molecular biology of microbial ureases. Microbiol. Rev. 59: 451-480.
- Konieczna I, Zarnowiec P, Kwinkowski M, Kolesinska B, Fraczyk J, Kaminski Z, et al. 2012. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. Sci. 13: 789-806. https://doi.org/10.2174/138920312804871094
- Dupuy B, Daube G, Popoff MR, Cole ST. 1997. Clostridium perfringens urease genes are plasmid borne. Infect. Immun. 65: 2313-2320.
- Lam S, Yeo M. 1980. Urease-positive Vibrio parahaemolyticus strain. J. Clin. Microbiol. 12: 57-59. https://doi.org/10.1128/JCM.12.1.57-59.1980
- Jeong DW, Heo S, Ryu S, Blom J, Lee JH. 2017. Genomic insights into the virulence and salt tolerance of Staphylococcus equorum. Sci. Rep. 7: 5383. https://doi.org/10.1038/s41598-017-05918-5
- Jeong DW, Jeong M, Lee JH. 2017. Antibiotic susceptibilities and characteristics of Bacillus licheniformis isolates from traditional Korean fermented soybean foods. LWT-Food Sci. Technol. 75: 565-568. https://doi.org/10.1016/j.lwt.2016.10.001
- Lee JH, Jeong DW. 2017. Complete genome sequence of Bacillus paralicheniformis 14DA11, exhibiting resistance to clindamycin and erythromycin. Genome Announc. 5: e01216-17.
- Jeong DW, Lee B, Lee JH. 2018. Complete genome sequence of Bacillus licheniformis 14ADL4 exhibiting resistance to clindamycin. Kor. J. Microbiol. 54: 169-170.
- Madslien EH, Olsen JS, Granum PE, Blatny JM. 2012. Genotyping of B. licheniformis based on a novel multi-locus sequence typing (MLST) scheme. BMC Microbiol. 12: 230. https://doi.org/10.1186/1471-2180-12-230
- Priest FG, Barker M, Baillie LW, Holmes EC, Maiden MC. 2004. Population structure and evolution of the Bacillus cereus group. J. Bacteriol. 186: 7959-7970. https://doi.org/10.1128/JB.186.23.7959-7970.2004
- Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
- Maiden MC. 2006. Multilocus sequence typing of bacteria. Annu. Rev. Microbiol. 60: 561-588. https://doi.org/10.1146/annurev.micro.59.030804.121325
- Dunlap CA, Kim SJ, Kwon SW, Rooney AP. 2016. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 66: 1212-1217. https://doi.org/10.1099/ijsem.0.000858
- Fan B, Blom J, Klenk HP, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an "Operational Group B. amyloliquefaciens" within the B. subtilis species complex. Front. Microbiol. 8: 22.
- EFSA. 2016. Update of the list of QPS-recommended biological agentsintentionally added to food or feed as notified to EFSA 5:suitability of taxonomic units notified to EFSA untilSeptember 2016. EFSA J. 15: 4663.
- Wang Y, Liu H, Liu K, Wang C, Ma H, Li Y, et al. 2017. Complete genome sequence of Bacillus paralicheniformis MDJK30, a plant growth-promoting Rhizobacterium with antifungal activity. Genome Announc. 5: e00577-17.
- Daas MS, Rosana ARR, Acedo JZ, Douzane M, Nateche F, Kebbouche-Gana S, et al. 2018. Draft genome sequence of Bacillus paralicheniformis F47, isolated from an Algerian salty lake. Genome Announc. 6: e00190-18.
Cited by
- Two genes involved in clindamycin resistance of Bacillus licheniformis and Bacillus paralicheniformis identified by comparative genomic analysis vol.15, pp.4, 2018, https://doi.org/10.1371/journal.pone.0231274
- Selection of Lactococcus lactis HY7803 for Glutamic Acid Production Based on Comparative Genomic Analysis vol.31, pp.2, 2021, https://doi.org/10.4014/jmb.2011.11022
- Functional Annotation Genome Unravels Potential Probiotic Bacillus velezensis Strain KMU01 from Traditional Korean Fermented Kimchi vol.10, pp.3, 2018, https://doi.org/10.3390/foods10030563
- Functional Genomic Insights into Probiotic Bacillus siamensis Strain B28 from Traditional Korean Fermented Kimchi vol.10, pp.8, 2021, https://doi.org/10.3390/foods10081906
- Genome sequencing and identification of cellulase genes in Bacillus paralicheniformis strains from the Red Sea vol.21, pp.1, 2021, https://doi.org/10.1186/s12866-021-02316-w