DOI QR코드

DOI QR Code

고분자 용액이 전기방사된 표면의 구조 가시화

Visualization of surface structures coated by electrospun polymers

  • Lee, Saebom (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Lee, Minki (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Yang, Sanghyeok (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Kim, Seunghyun (School of Chemical Engineering, Sungkyunkwan University) ;
  • Kim, HyeongJin (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Sung, Seokwon (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Lee, Minseong (School of Chemical Engineering, Sungkyunkwan University) ;
  • Lee, Jinkee (School of Mechanical Engineering, Sungkyunkwan University)
  • 투고 : 2018.11.16
  • 심사 : 2018.12.27
  • 발행 : 2018.12.31

초록

The surface structure of the electrospun polymer fibers depends on the polymer concentration, the type of solvent used, applied voltage and so on. To make a desired surface, it is important to understand the effects of the physicochemical properties to form a stable Taylor cone and jet dispensation. We observed the formation of Taylor cone and a consequent structure of fiber by controlling the parameters of applied voltage, solution concentration, solvent and collector effectively. Once the surfaces were fabricated, the structures were analyzed using optical imaging technologies. As the solution concentration was increased, the smooth fibers were formed. In addition, different solvent ratios determined the viscosity and the surface tension of solutions. As a result, with decreased viscosity and increased surface tension, thin fibers were obtained by electrospinning. Furthermore the aligned nanofiber was successfully created by using drum collector.

키워드

GSSGB0_2018_v16n3_40_f0001.png 이미지

Fig. 1. Schematic diagrams of electrospinning process with (a) flat plate collector and (b) drum collector.

GSSGB0_2018_v16n3_40_f0002.png 이미지

Fig. 2. Snapshots of droplet shapes as observed on the nozzle tip at different voltages: (a) 6 kV, (b) 8 kV, (c) 10 kV, (d) 13 kV.

GSSGB0_2018_v16n3_40_f0003.png 이미지

Fig. 3. SEM images showing surface structures of PVA at different concentrations: (a) 6 wt%, (b) 9 wt%, (c) 13 wt%, (d) 25 wt%.

GSSGB0_2018_v16n3_40_f0004.png 이미지

Fig. 4. SEM images showing surface structures of PVDF at different concentrations (Acetone:DMAc=3:1): (a) 5 wt%, (b) 10 wt%, (c) 15 wt%.

GSSGB0_2018_v16n3_40_f0005.png 이미지

Fig. 5. SEM images showing surface structures of 10 wt% PVDF at different solvent ratios (Acetone:DMAc): (a) 1:1, (b) 3:1, (c) 9:1.

GSSGB0_2018_v16n3_40_f0006.png 이미지

Fig. 6. Comparison of surface structures made by the electrospun 12.5 wt% PEO fibers on (a) flat plate collector and (b) drum collector at a rotational speed of 2800 rpm.

GSSGB0_2018_v16n3_40_f0007.png 이미지

Fig. 7. Alignment of 10 wt% PEO fibers at different rotational speeds of drum collector. (a) 1500 rpm, (b) 2000 rpm.

Table 1. Electrospinning conditions.

GSSGB0_2018_v16n3_40_t0001.png 이미지

Table 2. Viscosities and surface tensions of various PVA solutions.

GSSGB0_2018_v16n3_40_t0002.png 이미지

Table 3. Viscosities and surface tensions of various PVDF solutions.

GSSGB0_2018_v16n3_40_t0003.png 이미지

Table 4. Viscosities and surface tensions of PVDF solutions at different solvent ratios.

GSSGB0_2018_v16n3_40_t0004.png 이미지

Table 5. Viscosities and surface tensions of various PEO solutions.

GSSGB0_2018_v16n3_40_t0005.png 이미지

참고문헌

  1. Taylor, G. I., 1969, "Electrically driven jets", Proc. R. Soc. Lond. A, Vol.313(1515), pp.453-475. https://doi.org/10.1098/rspa.1969.0205
  2. Doshi, J., and Reneker, D. H., 1995, "Electrospinning process and applications of electrospun fibers", Journal of Electrostatics, Vol.35(2-3), pp.151-160. https://doi.org/10.1016/0304-3886(95)00041-8
  3. Koski, A., Yim, K., and Shivkumar, S, 2004, "Effect of molecular weight on fibrous PVA produced by electrospinning", Materials Letters, Vol.58(3-4), pp.493-497. https://doi.org/10.1016/S0167-577X(03)00532-9
  4. Son, W. K., Youk, J. H., Lee, T. S., and Park, W. H, 2004, "The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers", Polymer, Vol.45(9), pp.2959-2966. https://doi.org/10.1016/j.polymer.2004.03.006
  5. Choi, S. W., Jo, S. M., Lee, W. S., and Kim, Y. R., 2003, "An electrospun poly (vinylidene fluoride) nanofibrous membrane and its battery applications", Advanced Materials, Vol.15(23), pp.2027-2032. https://doi.org/10.1002/adma.200304617
  6. Deitzel, J. M., Kleinmeyer, J., Harris, D. E. A., and Tan, N. B., 2001, "The effect of processing variables on the morphology of electrospun nanofibers and textiles", Polymer, Vol.42(1), pp.261-272. https://doi.org/10.1016/S0032-3861(00)00250-0
  7. Zhang, C., Yuan, X., Wu, L., Han, Y., and Sheng, J., 2005, "Study on morphology of electrospun poly (vinyl alcohol) mats", European Polymer Journal, Vol.41(3), pp.423-432. https://doi.org/10.1016/j.eurpolymj.2004.10.027
  8. Fong, H., Chun, I., and Reneker, D. H., 1999, "Beaded nanofibers formed during electrospinning", Polymer, Vol.40(16), pp.4585-4592. https://doi.org/10.1016/S0032-3861(99)00068-3
  9. Sundaray, B., Subramanian, V., Natarajan, T. S., Xiang, R. Z., Chang, C. C., and Fann, W.S., 2004, "Electrospinning of continuous aligned polymer fibers", Applied Physics Letters, Vol.84(7), pp. 1222-1224. https://doi.org/10.1063/1.1647685
  10. Katta, P., Alessandro, M., Ramsier, R. D., and Chase, G. G., 2004, "Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector", Nano Letters, Vol.4(11), pp.2215-2218. https://doi.org/10.1021/nl0486158
  11. Yun, G. Y., Kim, H. S., Kim, J., Kim, K., and Yang, C., 2008, "Effect of aligned cellulose film to the performance of electro-active paper actuator", Sensors and Actuators A: Physical, Vol.141(2), pp.530-535. https://doi.org/10.1016/j.sna.2007.10.014
  12. Liu, Y., Gao, C., Pan, X., An, X., Xie, Y., Zhou, M. and Zhang, Y., 2011, "Synthesis and H2 sensing properties of aligned ZnO nanotubes", Applied Surface Science, Vol.257(6), pp.2264-2268. https://doi.org/10.1016/j.apsusc.2010.09.085
  13. San Choi, J., Lee, S. J., Christ, G. J., Atala, A., and Yoo, J. J., 2008, "The influence of electrospun aligned poly (${\varepsilon}$-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes", Biomaterials, Vol.29(19), pp.2899-2906. https://doi.org/10.1016/j.biomaterials.2008.03.031
  14. Lee, H., Nishino, M., Sohn, D., Lee, J. S., and Kim, I. S., 2018, "Control of the morphology of cellulose acetate nanofibers via electrospinning", Cellulose, Vol.25(5), pp.2829-2837. https://doi.org/10.1007/s10570-018-1744-0
  15. Mohammadzadehmoghadam, S., Dong, Y., Barbhuiya, S., Guo, L., Liu, D., Umer, R., Qi, X., and Tang, Y., 2016, "Electrospinning: Current Status and Future Trends", In Nano-size Polymers, pp.89-154
  16. Fennessey, S. F., and Farris, R. J., 2004, "Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns", Polymer, Vol.45(12), pp.4217-4225. https://doi.org/10.1016/j.polymer.2004.04.001
  17. El-hadi, A. M., and Al-Jabri, F. Y., 2016, "Influence of electrospinning parameters on fiber diameter and mechanical properties of poly (3-hydroxybutyrate) (PHB) and polyanilines (PANI) blends", Polymers, Vol.8(3), pp.97. https://doi.org/10.3390/polym8030097