DOI QR코드

DOI QR Code

Fabrication and Characterization of Graphene Oxide/Alginate-based Graphite Fibers

그래핀 산화물/알지네이트 기반 그라파이트 섬유의 제조 및 특성

  • Lim, Na-Young (Department of Organic Materials Fiber Engineering, Chonbuk National University) ;
  • Shim, Jin-Tae (Department of Organic Materials Fiber Engineering, Chonbuk National University) ;
  • Chung, Yong-Sik (Department of Organic Materials Fiber Engineering, Chonbuk National University)
  • 임나영 (전북대학교 유기소재파이버공학과) ;
  • 심진태 (전북대학교 유기소재파이버공학과) ;
  • 정용식 (전북대학교 유기소재파이버공학과)
  • Received : 2018.08.16
  • Accepted : 2018.12.11
  • Published : 2018.12.31

Abstract

Graphene oxide can be prepared from graphene by introducing hydrophilic functional groups to facilitate dispersion in water. This process has attracted significant attention for production of fillers for polymer composite materials. Alginate is a natural polymer that can be used as a composite fiber matrix that is industrially applicable and is currently being studied for the development of novel materials. Graphene oxide/alginate composite fibers were prepared with various graphene oxide contents by wet spinning in a calcium chloride coagulation solution. To improve thermal and electrical properties, the graphene oxide/alginate fibers were reduced using hydrogen iodide and acetic acid. After low temperature carbonization over a graphite nickel catalyst, the yield of the carbonized alginate precursor increased from 20.3% to 36.1% upon addition of graphene oxide. After reduction and carbonization, XRD analysis showed the presence of a $2{\theta}=26.4^{\circ}$ peak arising from the (002) plane of the graphite structure. In addition, electrical conductivity increased from 225 to 13575 S/m, indicating that the composite fibers successfully incorporated graphite.

Keywords

References

  1. X. Z. Xu and C. Gao, "Graphene Fiber: A New Trend in Carbon Fibers", Mater. Today, 2015, 18, 480. https://doi.org/10.1016/j.mattod.2015.06.009
  2. H. Kim, A. A. Abdala, and C. W. Macosko, "Graphene/ Polymer Nanocomposites", Macromolecules, 2010, 43, 6515-6530. https://doi.org/10.1021/ma100572e
  3. P. Steurer, R. Wissert, R. Thomann, and R. Muelhaupt, "Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide", Macromol. Rapid Commun., 2009, 30, 316-327. https://doi.org/10.1002/marc.200800754
  4. S. H. Munson-McGee, "Estimation of the Critical Concentration in an Anisotropic Percolation Network", Phys. Rev. B, 1991, 43, 3331-3336. https://doi.org/10.1103/PhysRevB.43.3331
  5. I. Balberg, N. Binenbaum, and N. Wagner, "Percolation Thresholds in the Three-Dimensional Sticks System", Phys. Rev. Lett., 1984, 52, 1465-1468. https://doi.org/10.1103/PhysRevLett.52.1465
  6. D. Han, L. Yan, W. Chen, and W. Li, "Preparation of Chitosan/ graphene Oxide Composite Film with Enhanced Mechanical Strength in the Wet State", Carbohydr. Polym., 2011, 83, 653-658. https://doi.org/10.1016/j.carbpol.2010.08.038
  7. Y. He, N. Zhang, Q. Gong, H. Qiub, W. Wang, Y. Liu, and J. Gao, "Alginate/graphene Oxide Fibers with Enhanced Mechanical Strength Prepared by Wet Spinning", Carbohydr. Polym., 2012, 88, 1100-1108. https://doi.org/10.1016/j.carbpol.2012.01.071
  8. G. T. Grant, E. R. Morris, D. A. Rees, P. J. C. Smith, and D. Thom, "Biological Interactions between Polysaccharides and Divalent Cations: The Egg-box Model", Federation of Eur BiochemSoci. Lett., 1973, 32, 195-198. https://doi.org/10.1016/0014-5793(73)80770-7
  9. S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, and R. S. Ruoff, “Graphene Oxide Papers Modified by Divalent Ionsenhancing Mechanical Properties via Chemical Crosslinking”, ACS Nano, 2008, 2, 572-578. https://doi.org/10.1021/nn700349a
  10. M. Ionita, M. A. Pandele, and H. Iovu, "Sodium Alginate/ graphene Oxide Composite Films with Enhanced Thermal and Mechanical Properties", Carbohydr. Polym., 2013, 94, 339-344. https://doi.org/10.1016/j.carbpol.2013.01.065
  11. J. J. Zhang, Q. Ji, X. H. Shen, Y. Z. Xia, L. W. Tan, and Q. S. Kong, "Pyrolysis Products and Thermal Degradation Mechanism of Intrinsically Flame-retardant Calcium Alginate Fibre", Polym. Degrad. Stab., 2011, 96, 936-942. https://doi.org/10.1016/j.polymdegradstab.2011.01.029
  12. J. J. Zhang, Q. Ji, F. J. Wang, L. W. Tan, and Y. Z. Xia, "Effects of Divalent Metal Ions on the Flame Retardancy and Pyrolysis Products of Alginate Fibres", Polym. Degrad. Stab., 2012, 97, 1034-1040. https://doi.org/10.1016/j.polymdegradstab.2012.03.004
  13. C. J. Zhang, N. N. Zhang, Z. Wang, and P. Zhu, "Flame Retardant Properties of Calcium Alginate Fibers", Dyeing Finishing, 2011, 8, 1-5.
  14. I. K. Moon, J. Lee, and H. Lee, "Highly Qualified Reduced Graphene Oxides: The Best Chemical Reduction", Chem. Commun., 2011, 47, 9681-9683. https://doi.org/10.1039/c1cc13312h
  15. M. Sevilla, C. Sanchis, T. Valdes-Solís, E. Morallon, and A. B. Fuertes, "Synthesis of Graphitic Carbon Nanostructures from Sawdust and Their Application as Electrocatalyst Supports", J. Phys. Chem. C, 2007, 111, 9749-9756. https://doi.org/10.1021/jp072246x
  16. J. P. Soares, J. E. Santos, G. O. Chierice, and E. T. G. Cavalheiro, "Thermal Behavior of Alginic Acid and Its Sodium Salt", Ecletica Quimica, 2004, 29, 57-63.
  17. Y. Liu, J. C. Zhao, C. J. Zhang, Y. Guo, L. Cui, P. Zhu, and D. Y. Wang, "Bio-based Nickel Alginate and Copper Alginate Films with Excellent Flame Retardancy: Preparation, Flammability and Thermal Degradation Behavior", RSC Adv., 2015, 5, 64125-64137. https://doi.org/10.1039/C5RA11048C
  18. K. Nakamoto, "Infrared and Raman Spectra of Inorganic and Coordination Compounds", John Wiley, New York, 1986, p.5.
  19. S. G. Kim, G. T. Lim, J. Jegal, and K. H. Lee, "Pervaporation Separation of MTBE (Methyl Tert-Butyl Ether) and Methanol Mixtures through Polyion Complex Composite Membranes Consisting of Sodium Alginate/Chitosan", J. Membr. Sci., 2000, 174, 1-15. https://doi.org/10.1016/S0376-7388(00)00339-2