DOI QR코드

DOI QR Code

Capacitive Touch Sensing Performance of Textile Electrodes Made of Conductive Spun Yarns and Filaments

전도성 방적사 및 필라멘트사를 이용한 섬유형 전극 정전용량형 터치 센서의 성능 비교 연구

  • Choi, Sejin (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Bang, Ju Yup (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Min, Moon Hong (Korea Dyeing and Finishing Technology Institute) ;
  • Lee, Chang Heon (Duckwoo Co., Ltd.) ;
  • Kim, Han Seong (Department of Organic Material Science and Engineering, Pusan National University)
  • 최세진 (부산대학교 유기소재시스템공학과) ;
  • 방주엽 (부산대학교 유기소재시스템공학과) ;
  • 민문홍 (다이텍연구원) ;
  • 이창헌 (덕우실업) ;
  • 김한성 (부산대학교 유기소재시스템공학과)
  • Received : 2018.10.29
  • Accepted : 2018.11.29
  • Published : 2018.12.31

Abstract

With the rapid growth of the Internet of things in the recent years, smart textile technologies have correspondingly attracted significant research attention in the industry. One important elementary technology being considered for smart textiles is a touch sensor input device to enable direct communication between users and other electronic devices. This study investigated the effect of the structural difference in conducting fibers on the sensing property of capacitive textile touch sensors. Conducting fibers made of stainless steel spun yarns and filaments used for electrodes presented different changes in electrical resistance with the application of tensile and compressive forces. It is believed that the different structures between spun yarns and filaments induced difference in the electric contact among their constituent fibers with the application of an external force. Moreover, the random deformation of staple fibers resulted in the unstable change of capacitance and large hysteresis, while a stable performance and low hysteresis was observed for textile sensors with filaments.

Keywords

References

  1. R. F. Service, "Technology-Electronic Textiles Charge Ahead", Science, 2003, 301, 909-911. https://doi.org/10.1126/science.301.5635.909
  2. H. H. Cheng, Z. L. Dong, C. G. Hu, Y. Zhao, Y. Hu, L. T. Qu, N. Chen, and L. M. Dai, "Textile Electrodes Woven by Carbon Nanotube-graphene Hybrid Fibers for Flexible Electrochemical Capacitors", Nanoscale, 2013, 5, 3428-3434. https://doi.org/10.1039/c3nr00320e
  3. G. H. Yu, L. B. Hu, M. Vosgueritchian, H. L. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui, and Z. N. Bao, "Solution- Processed Graphene/MnO2 Nanostructured Textiles for High- Performance Electrochemical Capacitors", Nano Lett., 2011, 11, 2905-2911. https://doi.org/10.1021/nl2013828
  4. Y. H. Lee, J. S. Kim, J. Noh, I. Lee, H. J. Kim, S. Choi, J. Seo, S. Jeon, T. S. Kim, J. Y. Lee, and J. W. Choi, "Wearable Textile Battery Rechargeable by Solar Energy", Nano Lett., 2013, 13, 5753-5761. https://doi.org/10.1021/nl403860k
  5. H. Qu, O. Semenikhin, and M. Skorobogatiy, "Flexible Fiber Batteries for Applications in Smart Textiles", Smart Mater. Struct., 2015, 24, 025012. https://doi.org/10.1088/0964-1726/24/2/025012
  6. L. B. Hu, F. La Mantia, H. Wu, X. Xie, J. McDonough, M. Pasta, and Y. Cui, "Lithium-Ion Textile Batteries with Large Areal Mass Loading", Adv. Energy. Mater., 2011, 1, 1012-1017. https://doi.org/10.1002/aenm.201100261
  7. O. Oess, "New Fibers in Textiles for Medical Purposes", Tekstil., 2004, 53, 474-477.
  8. M. A. R. Osman, M. K. A. Rahim, N. A. Samsuri, H. A. M. Salim, and M. F. Ali, "Embroidered Fully Textile Wearable Antenna for Medical Monitoring Applications", Prog. Electromagn. Res., 2011, 117, 321-337. https://doi.org/10.2528/PIER11041208
  9. X. H. Zhang and P. B. Ma, "Application of Knitting Structure Textiles in Medical Areas", Autex. Res. J., 2018, 18, 181-191. https://doi.org/10.1515/aut-2017-0019
  10. R. Sreelakshmy, S. A. Kumar, and T. Shanmuganantham, "A Wearable Type Embroidered Logo Antenna at ISM Band for Military Applications", Microw. Opt. Techn. Let., 2017, 59, 2159-2163. https://doi.org/10.1002/mop.30697
  11. G. S. Taylor and J. S. Barnett, "Evaluation of Wearable Simulation Interface for Military Training", Hum. Factors, 2013, 55, 672-690. https://doi.org/10.1177/0018720812466892
  12. S. F. Zopf and M. Manser, "Screen-printed Military Textiles for Wearable Energy Storage", J. Eng. Fiber. Fabr., 2016, 11, 1-8.
  13. D. Borro-Yaguez, J. Servan-Blanco, J. M. Cordero-Valle, J. R. Sanchez-Tapia, F. Mas-Morate, and L. Matey-Munoz, "Handsfree Wearable System for Helping in Assembly Tasks in Aerospace", Dyna-Bilbao., 2011, 86, 328-335.
  14. K. Cherenack and L. van Pieterson, "Smart Textiles: Challenges and Opportunities", J. Appl. Phys., 2012, 112, 091301. https://doi.org/10.1063/1.4742728
  15. E. Iranmanesh, A. Rasheed, W. W. Li, and K. Wang, "A Wearable Piezoelectric Energy Harvester Rectified by a Dual- Gate Thin-Film Transistor", IEEE T. Electron. Dev., 2018, 65, 542-546. https://doi.org/10.1109/TED.2017.2780261
  16. H. Wu, Y. A. Huang, F. Xu, Y. Q. Duan, and Z. P. Yin, "Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability", Adv. Mater., 2016, 28, 9881-9919. https://doi.org/10.1002/adma.201602251
  17. N. Lopez-Ruiz, J. Lopez-Torres, M. A. C. Rodriguez, I. P. de Vargas-Sansalvador, and A. Martinez-Olmos, "Wearable System for Monitoring of Oxygen Concentration in Breath Based on Optical Sensor", IEEE Sens. J., 2015, 15, 4039-4045. https://doi.org/10.1109/JSEN.2015.2410789
  18. S. Sheykhi, L. Mosca, and P. Anzenbacher, "Toward Wearable Sensors: Optical Sensor for Detection of Ammonium Nitratebased Explosives, ANFO and ANNM", Chem. Commun., 2017, 53, 5196-5199. https://doi.org/10.1039/C7CC01949A
  19. X. L. Fang, J. P. Tan, Y. Gao, Y. F. Lu, and F. Z. Xuan, "High- Performance Wearable Strain Sensors Based on Fragmented Carbonized Melamine Sponges for Human Motion Detection", Nanoscale, 2017, 9, 17948-17956. https://doi.org/10.1039/C7NR05903E
  20. T. M. Zhao, J. L. Li, H. Zeng, Y. M. Fu, H. X. He, L. L. Xing, Y. Zhang, and X. Y. Xue, "Self-powered Wearable Sensing-textiles for Real-time Detecting Environmental Atmosphere and Body Motion Based on Surface-triboelectric Coupling Effect", Nanotechnology, 2018, 29, 405504. https://doi.org/10.1088/1361-6528/aad3fc
  21. J. S. Roh, "Textile Touch Sensors for Wearable and Ubiquitous Interfaces", Text. Res. J., 2014, 84, 739-750. https://doi.org/10.1177/0040517513503733
  22. C. Mattmann, F. Clemens, and G. Troster, "Sensor for Measuring Strain in Textile", Sensors-Basel, 2008, 8, 3719-3732. https://doi.org/10.3390/s8063719
  23. O. Atalay, W. R. Kennon, and M. D. Husain, "Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties", Sensors-Basel, 2013, 13, 11114-11127. https://doi.org/10.3390/s130811114
  24. S. Takamatsu, T. Yamashita, T. Imai, and T. Itoh, "Fabric Touch Sensors Using Projected Self-Capacitive Touch Technique", Sensor. Mater., 2013, 25, 627-634.